已知數(shù)列{an}是一個(gè)有n項(xiàng)的等差數(shù)列,其公差為d,前n項(xiàng)和Sn=11,,又知a1,a7,a10分別是另一個(gè)等比數(shù)列的前三項(xiàng),求這個(gè)等差數(shù)列{an}的項(xiàng)數(shù)n.
分析:由條件可得 (4+6d)2=4(4+9d),解得d=-
1
3
,再根據(jù) Sn=11=4n+
n(n-1)
2
(-
1
3
)
,運(yùn)算求得n的值,并進(jìn)行檢驗(yàn).
解答:解:由條件可得a7=4+6d,a10=4+9d,且 a72=a1a10
故有 (4+6d)2=4(4+9d),解得d=-
1
3

Sn=11=4n+
n(n-1)
2
(-
1
3
)
=4n-
n(n-1)
6
,解得 n=3,或n=22,
而n=3不符合題意,故舍去.
故 n=22.
點(diǎn)評:本題主要考查等差數(shù)列的定義和性質(zhì),等差數(shù)列的通項(xiàng)公式,前n項(xiàng)和公式的應(yīng)用,等比數(shù)列的定義和性質(zhì),屬于中檔題.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知數(shù)列{an}是等比數(shù)列,且每一項(xiàng)都是正數(shù),若a1,a49是2x2-7x+6=0的兩個(gè)根,則a1•a2•a25•a48•a49的值為( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2013•樂山一模)已知數(shù)列{an}是等差數(shù)列,a5=5,若(6-a1
OB
=a2
OA
+a3
OC
,且A、B、C三點(diǎn)共線(O為該直線外一點(diǎn));點(diǎn)列(n,bn)在函數(shù)f(x)=log
1
2
x的反函數(shù)的圖象上.
(1)求an和bn;
(2)記數(shù)列Cn=anbn+bn(n∈N*),若{Cn}的前n項(xiàng)和為Tn,求使不等式
3-Tn
n+3
1
64
成立的最小自然數(shù)n的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知數(shù)列{an}是以d為公差的等差數(shù)列,數(shù)列{bn}是以q為公比的等比數(shù)列.
(1)若數(shù)列{bn}的前n項(xiàng)和為Sn,且a1=b1=d=2,S3<5b2+a88-180,求整數(shù)q的值;
(2)在(1)的條件下,試問數(shù)列{bn}中是否存在一項(xiàng)bk,使得bk恰好可以表示為該數(shù)列中連續(xù)P(P∈N,P≥2)項(xiàng)和?請說明理由;
(3)若b1=ar,b2=as≠ar,b3=at(其中t>s>r,且(s-r)是(t-r)的約數(shù))求證:數(shù)列{bn}中每一項(xiàng)都是數(shù)列{an}中的項(xiàng).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2012•普陀區(qū)一模)已知數(shù)列{an}是等差數(shù)列,其前n項(xiàng)和為Sn,若S10=20,S20=60,則
S30S10
=
6
6

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2011•揭陽一模)已知數(shù)列{an}是公比q>1的等比數(shù)列,且a1+a2=40,a1a2=256,又 bn=log2an
(1)求數(shù)列{bn}的通項(xiàng)公式;
(2)若Tn+1-Tn=bn(n∈N*),且T1=0.求證:對?n∈N*,n≥2有
1
3
n
i=2
1
Ti
3
4

查看答案和解析>>

同步練習(xí)冊答案