【題目】某大型娛樂場(chǎng)有兩種型號(hào)的水上摩托,管理人員為了了解水上摩托的使用及給娛樂城帶來的經(jīng)濟(jì)收入情況,對(duì)該場(chǎng)所最近6年水上摩托的使用情況進(jìn)行了統(tǒng)計(jì),得到相關(guān)數(shù)據(jù)如表:

年份

2011

2012

2013

2014

2015

2016

年份代碼

1

2

3

4

5

6

使用率

11

13

16

15

20

21

(1)請(qǐng)根據(jù)以上數(shù)據(jù),用最小二乘法求水上摩托使用率關(guān)于年份代碼的線性回歸方程,并預(yù)測(cè)該娛樂場(chǎng)2018年水上摩托的使用率;

(2)隨著生活水平的提高,外出旅游的老百姓越來越多,該娛樂場(chǎng)根據(jù)自身的發(fā)展需要,準(zhǔn)備重新購進(jìn)一批水上摩托,其型號(hào)主要是目前使用的Ⅰ型、Ⅱ型兩種,每輛價(jià)格分別為1萬元、1.2萬元.根據(jù)以往經(jīng)驗(yàn),每輛水上摩托的使用年限不超過四年.娛樂場(chǎng)管理部對(duì)已經(jīng)淘汰的兩款水上摩托的使用情況分別抽取了50輛進(jìn)行統(tǒng)計(jì),使用年限如條形圖所示:

已知每輛水上摩托從購入到淘汰平均年收益是0.8萬元,若用頻率作為概率,以每輛水上摩托純利潤(純利潤收益購車成本)的期望值為參考值,則該娛樂場(chǎng)的負(fù)責(zé)人應(yīng)該選購Ⅰ型水上摩托還是Ⅱ型水上摩托?

附:回歸直線方程為,其中 .

【答案】(1)回歸方程為.預(yù)測(cè)該娛樂場(chǎng)2018年水上摩托的使用率為.

(2)答案見解析.

【解析】試題分析:

1由條件所給數(shù)據(jù)可得, , , ,故可求得 ,所以線性回歸方程為.估計(jì)可得當(dāng)時(shí), ,即2018年水上摩托的使用率為。(2)由頻率估計(jì)概率,可得每輛Ⅰ型水上摩托可產(chǎn)生的純利潤期望值(萬元),每輛Ⅱ型水上摩托可產(chǎn)生的純利潤期望值(萬元),比較可知應(yīng)該選購Ⅱ型水上摩托。

試題解析:

(1)由表格數(shù)據(jù)可得, , ,

,

∴水上摩托使用率關(guān)于年份代碼的線性回歸方程為.

當(dāng)時(shí), ,

故預(yù)測(cè)該娛樂場(chǎng)2018年水上摩托的使用率為.

(2)由頻率估計(jì)概率,結(jié)合條形圖知Ⅰ型水上摩托每輛可使用1年、2年、3年和4年的概率分別為0.2,0.3,0.3,0.2,

∴每輛Ⅰ型水上摩托可產(chǎn)生的純利潤期望值

(萬元).

由頻率估計(jì)概率,結(jié)合條形圖知Ⅱ型水上摩托每輛可使用1年、2年、3年和4年的概率分別為0.1,0.2,0.4和0.3,

∴每輛Ⅱ型水上摩托可產(chǎn)生的純利潤期望值

(萬元).

.

∴應(yīng)該選購Ⅱ型水上摩托。

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù).

(1)若,函數(shù)的圖像與函數(shù)的圖像相切,求的值;

(2)若, ,函數(shù)滿足對(duì)任意,都有恒成立,求的取值范圍;

(3)若,函數(shù),且有兩個(gè)極值點(diǎn),其中,求的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè)橢圓的左、右焦點(diǎn)分別為、右頂點(diǎn)為,上頂點(diǎn)為.已知

1求橢圓的離心率;

2設(shè)為橢圓上異于其頂點(diǎn)的一點(diǎn),以線段為直徑的圓經(jīng)過點(diǎn)經(jīng)過點(diǎn)的直線與該圓相切于點(diǎn)求橢圓的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在如圖所示的幾何體中,四邊形是等腰梯形, , 平面 , .

(1)求證: 平面

(2)求二面角的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】甲、乙兩人進(jìn)行射擊比賽,各射擊局,每局射擊次,射擊命中目標(biāo)得分,未命中目標(biāo)得分,兩人局的得分情況如下:

)若從甲的局比賽中,隨機(jī)選取局,求這局的得分恰好相等的概率.

)如果,從甲、乙兩人的局比賽中隨機(jī)各選取局,記這局的得分和為,求的分布列和數(shù)學(xué)期望.

)在局比賽中,若甲、乙兩人的平均得分相同,且乙的發(fā)揮更穩(wěn)定,寫出的所有可能取值.(結(jié)論不要求證明)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè)函數(shù)

)若,求函數(shù)的單調(diào)區(qū)間.

)若函數(shù)在區(qū)間上是減函數(shù),求實(shí)數(shù)的取值范圍.

)過坐標(biāo)原點(diǎn)作曲線的切線,證明:切點(diǎn)的橫坐標(biāo)為

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】給出下列四個(gè)命題:

①將, 三種個(gè)體按3:1:2的比例分層抽樣調(diào)查,若抽取的個(gè)體為12個(gè),則樣本容量為30;

②一組數(shù)據(jù)1、2、3、4、5的平均數(shù)、中位數(shù)相同;

③甲組數(shù)據(jù)的方差為5,乙組數(shù)據(jù)為5、6、9、10、5,那么這兩組數(shù)據(jù)中較穩(wěn)定的是甲;

④統(tǒng)計(jì)的10個(gè)樣本數(shù)據(jù)為95,105,114,116,120,120,122,125,130,134,則樣本數(shù)據(jù)落在內(nèi)的頻率為0.4.

其中真命題為( )

A. ①② B. ②③ C. ③④ D. ②④

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】為了解某地區(qū)中學(xué)生的身體發(fā)育狀況,擬采用分層抽樣的方法從甲、乙、丙三所中學(xué)抽取個(gè)教學(xué)班進(jìn)行調(diào)查.已知甲、乙、丙三所中學(xué)分別有, , 個(gè)教學(xué)班.

(Ⅰ)求從甲、乙、丙三所中學(xué)中分別抽取的教學(xué)班的個(gè)數(shù).

)若從抽取的個(gè)教學(xué)班中隨機(jī)抽取個(gè)進(jìn)行調(diào)查結(jié)果的對(duì)比,求這個(gè)教學(xué)班中至少有一個(gè)來自甲學(xué)校的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知在平面直角坐標(biāo)系中,橢圓 的長軸長為4,離心率為.

(1)求橢圓的標(biāo)準(zhǔn)方程;

(2)過右焦點(diǎn)作一條不與坐標(biāo)軸平行的直線,若交橢圓、兩點(diǎn),點(diǎn)關(guān)于原點(diǎn)的對(duì)稱點(diǎn)為,求的面積的取值范圍.

查看答案和解析>>

同步練習(xí)冊(cè)答案