【題目】已知函數(shù)處取得極值.

(1)求實數(shù)的值;

(2)若,試討論的單調(diào)性.

【答案】(1);(2)上單調(diào)遞減,在上單調(diào)遞增.

【解析】

分析:(I)由題意,求得函數(shù)的導(dǎo)數(shù),又由題意得,即可求解實數(shù)的值;

(II)由(I)得,求得,求得的根,即可求解函數(shù)的單調(diào)區(qū)間.

詳解:(I)對f(x)求導(dǎo)得f'(x)=3ax2+ax,

因為f(x)在x=-處取得極值,所以f'(-)=0,

3a·+2·(-)==0,解得a=.

(II)由(I)得g(x)=()ex,故g'(x)=()ex+()ex=()ex

=x(x+1)(x+4)ex. g'(x)=0,解得x=0,x=-1x=-4.

x<-4時,g' (x)<0,故g(x)為減函數(shù);

當-4<x<-1時,g'(x)>0,故g(x)為增函數(shù);

當-1<x<0時,g'(x)<0,故g(x)為減函數(shù);

x>0時,g'(x)>0,故g(x)為增函數(shù).

綜上知,g(x)在(-,-4)和(-l,0)內(nèi)為減函數(shù),在(-4,-1)和(0,+∞)內(nèi)為增函數(shù).

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某租賃公司擁有汽車100.當每輛車的月租金為3000元時,可全部租出.當每輛車的月租金每增加元時,未租出的車將會增加一輛.租出的車每輛每月需要維護費元,未租出的車每輛每月需要維護費.

1)當每輛車的月租金定為元時,能租出多少輛車?

2)當每輛車的月租金定為多少元時,租賃公司的月收益最大?最大月收益是多少?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】下面命題正確的是(

A.”是“”的 充 分不 必 要條件

B.命題“若,則”的 否 定 是“ 存 在,則”.

C.設(shè),則“”是“”的必要而不充分條件

D.設(shè),則“”是“”的必要 不 充 分 條件

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè)數(shù)集A由實數(shù)構(gòu)成:且滿足:若,則

(1)若,試證明A中還有另外兩個元素;

(2)集合A是否為雙元素集合,并說明理由;

(3)若集合A是有限集,求集合A中所有元素的積。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在平面直角坐標系xOy中,曲線yx2-2x—3與兩條坐標軸的三個交點都在圓C上.若圓C與直線xya=0交于A,B兩點,

(1)求圓C的標準方程;

(2)若 O為原點),求a的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在△ABC中,角A,B,C的對邊分別為a,b,c,并且b=2
(1)若角A,B,C成等差數(shù)列,求△ABC外接圓的半徑;
(2)若三邊a,b,c成等差數(shù)列,求△ABC內(nèi)切圓半徑的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)f(x)=2lnx+ ﹣2lna﹣k
(1)若k=0,證明f(x)>0
(2)若f(x)≥0,求k的取值范圍;并證明此時f(x)的極值存在且與a無關(guān).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】(本題滿分14分)已知函數(shù)

)若函數(shù)在其定義域上是增函數(shù),求實數(shù)的取值范圍;

)當時,求出的極值;

)在()的條件下,若內(nèi)恒成立,試確定的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】富華中學(xué)的一個文學(xué)興趣小組中,三位同學(xué)張博源、高家銘和劉雨恒分別從莎士比亞、雨果和曹雪芹三位名家中選擇了一位進行性格研究,并且他們選擇的名家各不相同.三位同學(xué)一起來找圖書管理員劉老師,讓劉老師猜猜他們?nèi)烁髯缘难芯繉ο螅畡⒗蠋煵铝巳湓挘骸阿購埐┰囱芯康氖巧勘葋;②劉雨恒研究的肯定不是曹雪芹;③高家銘自然不會研究莎士比亞.”很可惜,劉老師的這種猜法,只猜對了一句.據(jù)此可以推知張博源、高家銘和劉雨恒分別研究的是__________.(A莎士比亞、B雨果、C曹雪芹,按順序填寫字母即可.)

查看答案和解析>>

同步練習(xí)冊答案