在某俱樂部組織的“迎奧杯”乒乓球單打比賽中,原計劃每兩名選手恰比賽一場,但有3名選手各比賽了2場之后就因傷退出了.這樣全部比賽只進行了50場,那么,在上述3名選手之間比賽的場數(shù)是______.
設(shè)原來比賽總?cè)藬?shù)為N,除這3人外的N-3人中比賽場數(shù)為
C2N-3
=
(N-3)(N-4)
2

①當這3人之間比賽0場時,由于
(N-3)(N-4)
2
=50沒有整數(shù)解,故舍去.
②當這3人之間比賽1場時,由
(N-3)(N-4)
2
=50,解得N=13,滿足條件.
③當這3人之間比賽2場時,由于
(N-3)(N-4)
2
=50,解得N無整數(shù)解,故舍去.
故在上述3名選手之間比賽的場數(shù)是1,
故答案為 1.
練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:

在某俱樂部組織的“迎奧杯”乒乓球單打比賽中,原計劃每兩名選手恰比賽一場,但有3名選手各比賽了2場之后就因傷退出了.這樣全部比賽只進行了50場,那么,在上述3名選手之間比賽的場數(shù)是
1
1

查看答案和解析>>

科目:高中數(shù)學 來源:2011-2012學年湖北省宜昌一中高二(上)期中數(shù)學試卷(理科)(解析版) 題型:填空題

在某俱樂部組織的“迎奧杯”乒乓球單打比賽中,原計劃每兩名選手恰比賽一場,但有3名選手各比賽了2場之后就因傷退出了.這樣全部比賽只進行了50場,那么,在上述3名選手之間比賽的場數(shù)是   

查看答案和解析>>

同步練習冊答案