【題目】近年空氣質量逐步霧霾天氣現(xiàn)象增多,大氣污染危害加重,大氣污染可引起心悸,呼吸困難等心肺疾病,為了解某市心肺疾病是否與性別有關,在某醫(yī)院隨機的對入院50人進行了問卷調查得到了如下的列聯(lián)表:
患心肺疾病 | 不患心肺疾病 | 合計 | |
男 | 5 | ||
女 | 10 | ||
合計 | 50 |
已知在全部50人中隨機抽取1人,抽到患心肺疾病的人的概率為.
(1)請將上面的列聯(lián)表補充完整,并判斷是否有99.5%的把握認為患心肺疾病與性別有關?說明你的理由;
(2)已知在患心肺疾病的10位女性中,有3位又患胃病,現(xiàn)在從患心肺疾病的10位女性中,選出3名進行其他方面的排查,記選出患胃病的女性人數(shù)為,求的分布列、數(shù)學期望及方差,下面的臨界值表供參考:
0.15 | 0.10 | 0.05 | 0.025 | 0.010 | 0.005 | 0.001 | |
2.072 | 2.706 | 3.841 | 5.024 | 6.635 | 7.879 | 10.828 |
(參考公式,其中.)
【答案】(1)詳見解析;(2)詳見解析.
【解析】試題分析:(1)根據(jù)在全部50人中隨機抽取1人,抽到患心肺疾病的人的概率為,可得患心肺疾病的人數(shù),即可得到列聯(lián)表;(2)
在患心肺疾病的10位女性中,有3位又患有胃病,記選出患胃病的女性人數(shù)為,則服從超幾何分布,即可得到的分布列、數(shù)學期望以及方差.
試題解析:(1)由于在全部50人中隨機抽取1人,抽到患心肺疾病的人的概率為,所以50人中患心肺疾病的人數(shù)為30人,故可將列聯(lián)表補充如下:
患心肺疾病 | 不患心肺疾病 | 合計 | |
男 | 20 | 5 | 25 |
女 | 10 | 15 | 25 |
合計 | 30 | 20 | 50 |
.
故有99.5%的把握認為患心肺疾病與性別有關.
(2)離散型隨機變量的所有可能取值為:
, ,
, .
所以的分布列如下:
∴.
.
科目:高中數(shù)學 來源: 題型:
【題目】已知函數(shù),直線的方程為.
(1)若直線是曲線的切線,求證: 對任意成立;
(2)若對任意恒成立,求實數(shù)是應滿足的條件.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知函數(shù)f(x)=|lgx|.若a≠b且,f(a)=f(b),則a+b的取值范圍是( )
A.(1,+∞)
B.[1,+∞)
C.(2,+∞)
D.[2,+∞)
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】以下幾個結論中:①在△ABC中,有等式 ②在邊長為1的正△ABC中一定有 =
③若向量 =(﹣3,2), =(0,﹣1),則向量 在向量 方向上的投影是﹣2
④與向量 =(﹣3,4)同方向的單位向量是 =(﹣ , )
⑤若a=40,b=20,B=25°,則滿足條件的△ABC僅有一個;
其中正確結論的序號為 .
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知是雙曲線的左右焦點,以為直徑的圓與雙曲線的一條漸近線交于點,與雙曲線交于點,且均在第一象限,當直線時,雙曲線的離心率為,若函數(shù),則()
A. 1 B. C. 2 D.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知函數(shù)
(1)若直線與曲線都只有兩個交點,證明:這四個交點可以構成一個平行四邊形,并計算該平行四邊形的面積;
(2)設函數(shù)在[1,2]上的值域為,求的最小值.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com