已知正方形ABCD內接于半徑為2、球心為O的球的截面小圓O',若小圓O'的半徑為
3
,球面上五點S、A、B、C、D構成正四棱錐S-ABCD,且點S、O在平面ABCD異側,則點S、C在該球面上的球面距離為
2
3
π
2
3
π
分析:因為正四棱錐的頂點在球面上,正四棱錐的高所在的直線經過球的直徑,如圖,在直角三角形OCO′求出球心角∠COO′,就可以求出S、C的球面距離.
解答:解:正四棱錐S-ABCD中,如圖,
正方形ABCD內接于半徑為2、球心為O的球的截面小圓O',
連接OC,O′C,在直角三角形O′OC中,
小圓O'的半徑O′C=
3
,球的半徑OC=2,
得sin∠O′OC=
O′C
OC
=
3
2
,∴∠O′OC=
π
3
,
∴S、C兩點間的球面距離為
π
3
×OC
=
2
3
π
,
故答案為:
2
3
π
點評:本題考查學生的空間想象能力,以及學生對球的結構認識,是基礎題.
練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

已知正方形ABCD的邊長為6,空間有一點M(不在平面ABCD內)滿足|MA|+|MB|=10,則三棱錐A-BCM的體積的最大值是( 。
A、48B、36C、30D、24

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知正方形ABCD的邊長為2,則該正方形內的點到正方形的頂點A、B、C、D的距離均不小于1的概率是
( 。
A、
π
4
B、1-
π
4
C、1-
π
12
D、1-
12

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知正方形ABCD邊長為1,一只螞蟻在此正方形區(qū)域內隨機爬行,則它在離頂點A的距離小于1的地方的概率為( 。

查看答案和解析>>

科目:高中數(shù)學 來源:2011年四川省成都七中高考數(shù)學模擬試卷2(理科)(解析版) 題型:解答題

已知正方形ABCD內接于半徑為2、球心為O的球的截面小圓O',若小圓O'的半徑為,球面上五點S、A、B、C、D構成正四棱錐S-ABCD,且點S、O在平面ABCD異側,則點S、C在該球面上的球面距離為   

查看答案和解析>>

同步練習冊答案