已知頂點(diǎn)在原點(diǎn),焦點(diǎn)在軸上的拋物線過點(diǎn).

(1)求拋物線的標(biāo)準(zhǔn)方程;

(2)若拋物線與直線交于、兩點(diǎn),求證:.

 

 

【答案】

(1) ;(2)

【解析】

試題分析:(1)由題意可知,拋物線的開口向右,所以可設(shè)拋物線的標(biāo)準(zhǔn)方程為:,因?yàn)閽佄锞過點(diǎn),從而求出方程;(2)設(shè)出兩點(diǎn)坐標(biāo),聯(lián)立直線和拋物線的方程,化簡(jiǎn)整理為一元二次方程,根據(jù)韋達(dá)定理寫出兩根之和與兩根之積,由斜率公式寫出,利用兩根和與兩根之積求出其乘積.

試題解析:(1)設(shè)拋物線的標(biāo)準(zhǔn)方程為:,因?yàn)閽佄锞過點(diǎn),所以

解得,所以拋物線的標(biāo)準(zhǔn)方程為:

(2)設(shè)、兩點(diǎn)的坐標(biāo)分別為,由題意知:

  消去得: ,根據(jù)韋達(dá)定理知:,

所以,

考點(diǎn):本題主要考查了拋物線的標(biāo)準(zhǔn)方程,以及直線與拋物線的位置關(guān)系,考查了方程的思想方法.

 

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知頂點(diǎn)在原點(diǎn),焦點(diǎn)在y軸上的拋物線過點(diǎn)P(2,1).
(1)求拋物線的標(biāo)準(zhǔn)方程;
(2)過Q(1,1)作直線交拋物線于A、B兩點(diǎn),使得Q恰好平分線段AB,求直線AB的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知頂點(diǎn)在原點(diǎn),焦點(diǎn)在x軸上的拋物線與直線y=2x+1交于P、Q兩點(diǎn),|PQ|=
15
,求拋物線的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知頂點(diǎn)在原點(diǎn)、焦點(diǎn)F在y軸正半軸上的拋物線Q1過點(diǎn)(2,1),拋物線Q2與Q1關(guān)于x軸對(duì)稱.
(I)求拋物線Q2的方程;
(II)過點(diǎn)F的直線交拋物線Q1于點(diǎn)A(x1,y1),B(x2,y2)(x1<x2),過A、B分別作Q1的切線l1,l2,記直線l1與Q2的交點(diǎn)為M(m1,n1),N(m2,n2)(m1<m2),求證:拋物線Q2上的點(diǎn)S(s,t)若滿足條件m2s=4,則S恰在直線l2上.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知頂點(diǎn)在原點(diǎn),焦點(diǎn)在y軸上的拋物線過點(diǎn)P(2,1).
(1)求拋物線的標(biāo)準(zhǔn)方程;
(2)過點(diǎn)P作直線l與拋物線有且只有一個(gè)公共點(diǎn),求直線l的方程;
(3)過點(diǎn)Q(1,1)作直線交拋物線于A,B兩點(diǎn),使得Q恰好平分線段AB,求直線AB的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知頂點(diǎn)在原點(diǎn),焦點(diǎn)在x軸上的拋物線被直線y=2x+1截得的弦長(zhǎng)為
15

(1)求拋物線的方程;
(2)若拋物線與直線y=2x-5無公共點(diǎn),試在拋物線上求一點(diǎn),使這點(diǎn)到直線y=2x-5的距離最短.

查看答案和解析>>

同步練習(xí)冊(cè)答案