【題目】下列各組幾何體中,都是多面體的一組是( )

A. 三棱柱、四棱臺、球、圓錐 B. 三棱柱、四棱臺、正方體、圓臺

C. 三棱柱、四棱臺、正方體、六棱錐 D. 圓錐、圓臺、球、半球

【答案】C

【解析】對于A,由于球、圓錐是旋轉體,不是多面體,故A不正確;對于B,由于圓臺是旋轉體,不是多面體,故B不正確;對于C,三棱柱、四棱臺、正方體、六棱錐,它們的各個面都是平面多邊形,所以C的各個幾何體都是多面體,C項正確;對于D,圓錐、圓臺、球、半球都是旋轉體,D項中沒有多面體,故D不正確故選C.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

【題目】如圖,正方體中,M,N,E,F(xiàn)分別是棱A1B1,A1D1,B1C1,C1D1的中點,求證:平面AMN∥平面EFDB.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】在平面直角坐標系中,圓C的參數(shù)方程為,(t為參數(shù)),在以原點O為極點,x軸的非負半軸為極軸建立的極坐標系中,直線的極坐標方程為,A,B兩點的極坐標分別為.

(1)求圓C的普通方程和直線的直角坐標方程;

(2)點P是圓C上任一點,求△PAB面積的最小值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】梯形ABCD中,AB∥CD,AB平面α,CD平面α,則直線CD與平面α內的直線的位置關系只能是( )
A.平行
B.平行或異面
C.平行或相交
D.異面或相交

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】ABC中,角A,B,C的對邊分別為a,b,C已知3cosB-C-1=6cosBcosC

1求cosA;

2若a=3,ABC的面積為2 ,求b,C

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】定義在上的函數(shù),如果滿足:對任意,存在常數(shù),都有成立,則稱上的有界函數(shù),其中稱為函數(shù)的上界.已知函數(shù),.

(1)當時,求函數(shù)上的值域,并判斷函數(shù)上是否為有界函數(shù),請說明理由;

(2)時,判斷函數(shù)的奇偶性并證明,并判斷是否有上界,并說明理由;

,函數(shù)上的上界是,求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】,函數(shù).

(1)求函數(shù)的單調遞增區(qū)間;

(2)設,問是否存在極值, 若存在, 請求出極值; 若不存在, 請說明理由;

(3)設是函數(shù)圖象上任意不同的兩點, 線段的中點為,直線的斜率為.證明:.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】某校100名學生期中考試數(shù)學成績的頻率分布直方圖如圖,其中成績分組區(qū)間如下:

組號

第一組

第二組

第三組

第四組

第五組

分組

(1)求圖中的值;

(2)根據頻率分布直方圖,估計這100名學生期中考試數(shù)學成績的平均分;

(3)現(xiàn)用分層抽樣的方法從第3、4、5組中隨機抽取6名學生,將該樣本看成一個總體,從中隨機抽取2名,求其中恰有1人的分數(shù)不低于90分的概率?

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】年下學期某市教育局對某校高三文科數(shù)學進行教學調研,從該校文科生中隨機抽取名學生的數(shù)學成績進行統(tǒng)計,將他們的成績分成六段后得到如圖所示的頻率分布直方圖.

(1)求這40名學生中數(shù)學成績不低于120分的學生人數(shù);

(2)若從數(shù)學成績內的學生中任意抽取2人,求成績在中至少有一人的概率.

查看答案和解析>>

同步練習冊答案