(本小題滿分12分)
已知.
(1)求的表達(dá)式;
(2)若函數(shù)和函數(shù)的圖象關(guān)于原點(diǎn)對(duì)稱,
(。┣蠛瘮(shù)的解析式;
(ⅱ)若在區(qū)間上是增函數(shù),求實(shí)數(shù)l的取值范圍.

(1)= -sin2x+2sinx  (2)

解析試題分析:
解:(1)

(2)設(shè)函數(shù)的圖象上任一點(diǎn)關(guān)于原點(diǎn)的對(duì)稱點(diǎn)為
,∵點(diǎn)在函數(shù)的圖象上


∴函數(shù)的解析式為= -sin2x+2sinx  
(Ⅲ)
設(shè) 
則有
當(dāng)時(shí),h(t)=4t+1在[-1,1]上是增函數(shù),∴λ= -1 
當(dāng)時(shí),對(duì)稱軸方程為直線.
ⅰ) 時(shí),,解得
ⅱ)當(dāng)時(shí),,解得
綜上,.    
考點(diǎn):本試題考查了三角函數(shù)的性質(zhì)。
點(diǎn)評(píng):對(duì)于三角函數(shù)的性質(zhì)的研究,一般首先是將函數(shù)化為單一函數(shù),同時(shí)能利用三角函數(shù)的性質(zhì)分析得到其結(jié)論。而對(duì)于函數(shù)給定區(qū)間的遞增性質(zhì),結(jié)合了二次函數(shù),因此對(duì)于對(duì)稱軸和定義域的關(guān)系加以討論得到,屬于難度試題。

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

(本小題共8分)
已知函數(shù)f(x)對(duì)任意實(shí)數(shù)x,y都有f(x+y)=f(x)+f(y),且當(dāng)x>0時(shí),f(x)>0,f(-1)=-2,求f(x)在[-2,1]上的值域。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

已知函數(shù) 為常數(shù),
(1)當(dāng)時(shí),求函數(shù)處的切線方程;
(2)當(dāng)處取得極值時(shí),若關(guān)于的方程上恰有兩個(gè)不相等的實(shí)數(shù)根,求實(shí)數(shù)的取值范圍;
(3)若對(duì)任意的,總存在,使不等式成立,求實(shí)數(shù)的取值范圍。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

(本小題滿分14分)
(1)已知函數(shù)
(2)已知函數(shù)分別由下表給出:


1
2
 
3
6

1
2

2
1
  
用分段函數(shù)表示,并畫出函數(shù)的圖象。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

(本小題滿分12分)已知函數(shù)滿足.
(Ⅰ)求的解析式及其定義域;
(Ⅱ)寫出的單調(diào)區(qū)間并證明.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

(本小題滿分13分)
設(shè)函數(shù),其中,且a≠0.
(Ⅰ)當(dāng)a=2時(shí),求函數(shù)在區(qū)間[1,e]上的最小值;
(Ⅱ)求函數(shù)的單調(diào)區(qū)間。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

(本題12分)
設(shè),,其中.
(1) 若,求的值;
(2)若,求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

已知命題p:指數(shù)函數(shù)f(x)=(2a-6)x在R上單調(diào)遞減,命題q:關(guān)于x的方程x2-3ax+2a2+1=0的兩個(gè)實(shí)根均大于3.若pq為真,pq為假,求實(shí)數(shù)a的取值范圍.

查看答案和解析>>

同步練習(xí)冊(cè)答案