在△ABC中,tanB+tanC+
3
tanBtanC=
3
,又
3
tanA+
3
tanB+1=tanAtanB
,試判斷△ABC的形狀.
分析:把已知的兩等式變形后,根據(jù)兩角和的正切函數(shù)公式及誘導(dǎo)公式化簡,分別根據(jù)A和C的范圍,利用特殊角的三角函數(shù)值即可求出A和C的度數(shù),即可判斷出三角形的形狀.
解答:解:∵tanB+tanC+
3
tanBtanC=
3
,且A+B+C=180°,
tanB+tanC
1-tanBtanC
=
3
,即tan(B+C)=-tanA=
3
,
tanA=-
3
,
∵0<A<π,∴∠A=120°,
3
tanA+
3
tanB+1=tanAtanB
,
tanB+tanA
1-tanBtanA
=-
3
3

tan(B+A)=-tanC=-
3
3

tanC=
3
3
,
∵0<C<π,∴∠C=30°,
∴∠B=180°-120°-30°=30°,即∠B=∠C,
∴AB=AC,
則△ABC是頂角為120°的等腰三角形.
點(diǎn)評:此題考查了三角形形狀的判定,要到的知識(shí)有兩角和與差的正切函數(shù)公式、誘導(dǎo)公式、特殊角的三角函數(shù)值,以及等腰三角形的判別方法,其中靈活運(yùn)用公式把已知的兩等式進(jìn)行三角函數(shù)的恒等變形,得到A和C的度數(shù),進(jìn)而得到B的度數(shù)是解本題的關(guān)鍵.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源:數(shù)學(xué)教研室 題型:022

在△ABC中,tan B=1,tan C=2,b=100,則a=_______.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:數(shù)學(xué)教研室 題型:022

在△ABC中,tan B=1,tan C=2,b=100,則a=__________.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:浙江省湖州中學(xué)2010屆高三下學(xué)期第一次月考數(shù)學(xué)理科試題 題型:013

在△ABC中,tan,=0,則過點(diǎn)C,以A、H為兩焦點(diǎn)的橢圓的離心率為

[  ]
A.

B.

C.

D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:浙江省湖州中學(xué)2010屆高三下學(xué)期第一次月考數(shù)學(xué)文科試題 題型:013

在△ABC中,tan,=0,=0,則過點(diǎn)C,以A、H為兩焦點(diǎn)的橢圓的離心率為

[  ]
A.

B.

C.

D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:0103 期中題 題型:解答題

在△ABC中,tan=2sinC。
(1) 求∠C的大小;
(2) 求y=sinA+sinB+sinC的取值范圍。

查看答案和解析>>

同步練習(xí)冊答案