【題目】定義在(﹣∞,0)∪(0,+∞)上的函數(shù)f(x),如果對(duì)于任意給定的等比數(shù)列{an},{f(an)}仍是等比數(shù)列,則稱f(x)為“保等比數(shù)列函數(shù)”.現(xiàn)有定義在(﹣∞,0)∪(0,+∞)上的如下函數(shù):①f(x)=x2;②f(x)=2x;③f(x)= ;④f(x)=ln|x|.則其中是“保等比數(shù)列函數(shù)”的f(x)的序號(hào)為(
A.①②
B.③④
C.①③
D.②④

【答案】C
【解析】解:由等比數(shù)列性質(zhì)知 ,
=f2(an+1),故正確;
=f2(an+1),故不正確;
= =f2(an+1),故正確;
④f(an)f(an+2)=ln|an|ln|an+2|≠ =f2(an+1),故不正確;
故選C
【考點(diǎn)精析】認(rèn)真審題,首先需要了解等比關(guān)系的確定(等比數(shù)列可以通過定義法、中項(xiàng)法、通項(xiàng)公式法、前n項(xiàng)和法進(jìn)行判斷).

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知數(shù)列{an}的通項(xiàng)公式為an= ,n∈N*
(1)求數(shù)列{ }的前n項(xiàng)和Sn
(2)設(shè)bn=anan+1 , 求{bn}的前n項(xiàng)和Tn

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知平行四邊形ABCD中,∠A=45°,且AB=BD=1,將△ABD沿BD折起,使得平面ABD⊥平面BCD,如圖所示:

(1)求證:AB⊥CD;
(2)若M為AD的中點(diǎn),求二面角A﹣BM﹣C的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在△ABC中,角A,B,C的對(duì)邊分別為a,b,c,且a,b,c成等比數(shù)列,sinB=
(1)求 + 的值;
(2)若 =12,求a+c的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)f(x)=(a∈R),給出兩個(gè)命題:p:函數(shù)f(x)的值域不可能是(0,+∞);q:函數(shù)f(x)的單調(diào)遞增區(qū)間可以是(-∞,-2].那么下列命題為真命題的是(  )

A. p∧q B. p∨(q)

C. (p)∧q D. (p)∧(q)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,雙曲線 =1(a,b>0)的兩頂點(diǎn)為A1 , A2 , 虛軸兩端點(diǎn)為B1 , B2 , 兩焦點(diǎn)為F1 , F2 . 若以A1A2為直徑的圓內(nèi)切于菱形F1B1F2B2 , 切點(diǎn)分別為A,B,C,D.則: (Ⅰ)雙曲線的離心率e=;
(Ⅱ)菱形F1B1F2B2的面積S1與矩形ABCD的面積S2的比值 =

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在△ABC中,a,b,c分別為內(nèi)角A,B,C的對(duì)邊,且asin B=-bsin.

(1)求A;

(2)若△ABC的面積S=c2,求sin C的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知CD是等邊三角形ABC的AB邊上的高,E,F分別是AC和BC邊的中點(diǎn),現(xiàn)將ABC沿CD翻折成直二面角A-DC-B.

(1)求直線BC與平面DEF所成角的余弦值;

(2)在線段BC上是否存在一點(diǎn)P,使APDE?證明你的結(jié)論.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知橢圓 的長(zhǎng)軸長(zhǎng)是短軸長(zhǎng)的兩倍,且過點(diǎn)C(2,1),點(diǎn)C關(guān)于原點(diǎn)O的對(duì)稱點(diǎn)為點(diǎn)D.
(1)求橢圓E的方程;
(2)點(diǎn)P在橢圓E上,直線CP和DP的斜率都存在且不為0,試問直線CP和DP的斜率之積是否為定值?若是,求此定值;若不是,請(qǐng)說明理由:
(3)平行于CD的直線l交橢圓E于M,N兩點(diǎn),求△CMN面積的最大值,并求此時(shí)直線l的方程.

查看答案和解析>>

同步練習(xí)冊(cè)答案