【題目】為加快新能源汽車產(chǎn)業(yè)發(fā)展,推進(jìn)節(jié)能減排,某年國(guó)家對(duì)消費(fèi)者購(gòu)買新能源汽車給予補(bǔ)貼,其中對(duì)純電動(dòng)乘用車補(bǔ)貼標(biāo)準(zhǔn)如下表:
新能源汽車補(bǔ)貼標(biāo)準(zhǔn) | |||
車輛類型 | 續(xù)駛里程 | ||
純電動(dòng)乘用車 | 3.5萬(wàn)元/輛 | 5萬(wàn)元/輛 | 6萬(wàn)元/輛 |
某校研究學(xué)習(xí)小組從汽車市場(chǎng)上隨機(jī)選取了輛純電動(dòng)乘用車,根據(jù)其續(xù)駛里程(單次充電后能行駛的最大里程)作出了如下的頻率與頻數(shù)的統(tǒng)計(jì)表:
分組 | 頻數(shù) | 頻率 |
2 | 0.2 | |
5 | ||
合計(jì) | 1 |
(1)若從這輛純電動(dòng)乘用車中任選2輛,求選到的2輛車?yán)m(xù)駛里程都不低于150km的概率.
(2)若以頻率作為概率,設(shè)為購(gòu)買一輛純電動(dòng)乘用車獲得的補(bǔ)貼,求的分布列和數(shù)學(xué)期望.
【答案】(1);(2)分布列見(jiàn)解析,5.
【解析】
(1)由第一行的頻數(shù)和頻率計(jì)算出總數(shù),然后可得出,續(xù)駛里程都不低于150km的車輛數(shù)為8,計(jì)算出任選2輛的總方法數(shù),及選到的2輛車?yán)m(xù)駛里程都不低于150km的方法數(shù)后再計(jì)算出概率.
(2)的可能取值為3.5,5,6,由(1)可得各概率,從而得概率分布列,再由期望公式計(jì)算出期望.
解:(1)由表格可知,所以,
所以,,.
設(shè)“從這10輛純電動(dòng)乘用車中任選2輛,選到的2輛車?yán)m(xù)駛里程都不低于”為事件,
則
(2)的可能取值為3.5,5,6,
,
,
.
所以的分布列為
3.5 | 5 | 6 | |
0.2 | 0.5 | 0.3 |
.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知單調(diào)遞增的等比數(shù)列滿足,且是的等差中項(xiàng).
(Ⅰ)求數(shù)列的通項(xiàng)公式;
(Ⅱ)若,對(duì)任意正數(shù)數(shù), 恒成立,試求的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù),.
(1)若,求函數(shù)的單調(diào)遞減區(qū)間;
(2)若關(guān)于的不等式恒成立,求整數(shù)的最小值;
(3)若,正實(shí)數(shù),滿足,證明:.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】若函數(shù)(,是自然對(duì)數(shù)的底數(shù),)存在唯一的零點(diǎn),則實(shí)數(shù)的取值范圍為______.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】為培養(yǎng)學(xué)生對(duì)傳統(tǒng)文化的興趣,某校從理科甲班抽取60人,從文科乙班抽取50人參加傳統(tǒng)文化知識(shí)競(jìng)賽.
(1)根據(jù)題目條件完成下邊列聯(lián)表,并據(jù)此判斷是否有99%的把握認(rèn)為學(xué)生的傳統(tǒng)文化知識(shí)競(jìng)賽成績(jī)優(yōu)秀與文理分科有關(guān).
優(yōu)秀人數(shù) | 非優(yōu)秀人數(shù) | 總計(jì) | |
甲班 | |||
乙班 | 20 | ||
總計(jì) | 60 |
(2)現(xiàn)已知,,三人獲得優(yōu)秀的概率分別為,,,設(shè)隨機(jī)變量表示,,三人中獲得優(yōu)秀的人數(shù),求的分布列及期望.
附:,.
0.100 | 0.050 | 0.025 | 0.010 | 0.005 | |
2.706 | 3.841 | 5.024 | 6.635 | 7.879 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】祖暅?zhǔn)俏覈?guó)南北朝時(shí)期杰出的數(shù)學(xué)家和天文學(xué)家祖沖之的兒子,他提出了一條原理:“冪勢(shì)既同冪,則積不容異”.這里的“冪”指水平截面的面積,“勢(shì)”指高.這句話的意思是:兩個(gè)等高的幾何體若在所有等高處的水平截面的面積相等,則這兩個(gè)幾何體體積相等.一般大型熱電廠的冷卻塔大都采用雙曲線型.設(shè)某雙曲線型冷卻塔是曲線 與直線, 和所圍成的平面圖形繞軸旋轉(zhuǎn)一周所得,如圖所示.試應(yīng)用祖暅原理類比求球體體積公式的方法,求出此冷卻塔的體積為_______.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】設(shè)函數(shù)f(x)=Asin(ωx+φ)(A≠0,ω>0,<φ<)的圖象關(guān)于直線對(duì)稱,它的最小正周期為π,則( )
A. f(x)的圖象過(guò)點(diǎn)(0,) B. f(x)在上是減函數(shù)
C. f(x)的一個(gè)對(duì)稱中心是 D. f(x)的一個(gè)對(duì)稱中心是
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】在《周髀算經(jīng)》中,把圓及其內(nèi)接正方形稱為圓方圖,把正方形及其內(nèi)切圓稱為方圓圖.圓方圖和方圓圖在我國(guó)古代的設(shè)計(jì)和建筑領(lǐng)域有著廣泛的應(yīng)用.山西應(yīng)縣木塔是我國(guó)現(xiàn)存最古老、最高大的純木結(jié)構(gòu)樓閣式建筑,它的正面圖如下圖所示.以該木塔底層的邊作正方形,以點(diǎn)或點(diǎn)為圓心,以這個(gè)正方形的對(duì)角線為半徑作圓,會(huì)發(fā)現(xiàn)塔的高度正好跟此對(duì)角線長(zhǎng)度相等.以該木塔底層的邊作正方形,會(huì)發(fā)現(xiàn)該正方形與其內(nèi)切圓的一個(gè)切點(diǎn)正好位于塔身和塔頂?shù)姆纸缇上.經(jīng)測(cè)量發(fā)現(xiàn),木塔底層的邊不少于47.5米,塔頂到點(diǎn)的距離不超過(guò)19.9米,則該木塔的高度可能是(參考數(shù)據(jù):)( )
A.66.1米B.67.3米C.68.5米D.69.0米
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如果存在常數(shù),使得數(shù)列滿足:若是數(shù)列中的一項(xiàng),則也是數(shù)列 中的一項(xiàng),稱數(shù)列為“兌換數(shù)列”,常數(shù)是它的“兌換系數(shù)”.
(1)若數(shù)列:是“兌換系數(shù)”為的“兌換數(shù)列”,求和的值;
(2)已知有窮等差數(shù)列的項(xiàng)數(shù)是,所有項(xiàng)之和是,求證:數(shù)列是“兌換數(shù)列”,并用和表示它的“兌換系數(shù)”;
(3)對(duì)于一個(gè)不小于3項(xiàng),且各項(xiàng)皆為正整數(shù)的遞增數(shù)列,是否有可能它既是等比數(shù)列,又是“兌換數(shù)列”?給出你的結(jié)論,并說(shuō)明理由.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com