【題目】已知函數(shù)為偶函數(shù),且在上單調(diào)遞減,則的解集為
A. B.
C. D.
【答案】B
【解析】
根據(jù)函數(shù)奇偶性的定義,求出a,b的關(guān)系,結(jié)合函數(shù)的單調(diào)性判斷a的符號,然后根據(jù)不等式的解法進行求解即可.
∵f(x)=(x-1)(ax+b)=ax2+(b-a)x-b為偶函數(shù),
∴f(-x)=f(x),
則ax2-(b-a)x-b=ax2+(b-a)x-b,
即-(b-a)=b-a,
得b-a=0,得b=a,
則f(x)=ax2-a=a(x2-1),
若f(x)在(0,+∞)單調(diào)遞減,
則a<0,
由f(3-x)<0得a[(3-x)2-1)]<0,即(3-x)2-1>0,
得x>4或x<2,
即不等式的解集為(-∞,2)∪(4,+∞),
故選B.
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在平面直角坐標系xOy中,直線C1的參數(shù)方程為(t為參數(shù)),以O為極點,x軸的正半軸為極軸建立極坐標系,曲線C2的極坐標方程為ρ2(1+sin2θ)=2,點M的極坐標為(,).
(1)求點M的直角坐標和C2的直角坐標方程;
(2)已知直線C1與曲線C2相交于A,B兩點,設(shè)線段AB的中點為N,求|MN|的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,一個正方形花圃被分成5份.
(1)若給這5個部分種植花,要求相鄰兩部分種植不同顏色的花,己知現(xiàn)有紅、黃、藍、綠4種顏色不同的花,求有多少種不同的種植方法?
(2)若向這5個部分放入7個不同的盆栽,要求每個部分都有盆栽,問有多少種不同的放法?
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】第一次大考后,某校對甲、乙兩個文科班的數(shù)學(xué)考試成績進行分析,規(guī)定:大于或等于分為優(yōu)秀,分以下為非優(yōu)秀,統(tǒng)計成績后,得到如下列聯(lián)表,且已知在甲、乙兩個文科班全部人中隨機抽取人為優(yōu)秀的概率為.
(I)請完成列聯(lián)表:
優(yōu)秀 | 非優(yōu)秀 | 合計 | |
甲班 | |||
乙班 | |||
合計 |
(Ⅱ)根據(jù)列聯(lián)表的數(shù)據(jù)能否在犯錯誤的概率不超過的前提下認為成績與班級有關(guān)系?
參考公式和臨界值表:
,其中.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某企業(yè)2018年招聘員工,其中,,,,五種崗位的應(yīng)聘人數(shù)、錄用人數(shù)和錄用比例(精確到1%)如下:
崗位 | 男性 應(yīng)聘人數(shù) | 男性 錄用人數(shù) | 男性 錄用比例 | 女性 應(yīng)聘人數(shù) | 女性 錄用人數(shù) | 女性 錄用比例 |
269 | 167 | 40 | 24 | |||
40 | 12 | 202 | 62 | |||
177 | 57 | 184 | 59 | |||
44 | 26 | 38 | 22 | |||
3 | 2 | 3 | 2 | |||
總計 | 533 | 264 | 467 | 169 |
(1)從表中所有應(yīng)聘人員中隨機選擇1人,試估計此人被錄用的概率;
(2)從應(yīng)聘崗位的6人中隨機選擇2人.記為這2人中被錄用的人數(shù),求的分布列和數(shù)學(xué)期望;
(3)表中,,,,各崗位的男性、女性錄用比例都接近(二者之差的絕對值不大于),但男性的總錄用比例卻明顯高于女性的總錄用比例.研究發(fā)現(xiàn),若只考慮其中某四種崗位,則男性、女性的總錄用比例也接近,請寫出這四種崗位.(只需寫出結(jié)論)
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知集合A={x|x2﹣2x﹣3≤0},B={x|x2﹣2mx+m2﹣4≤0,x∈R,m∈R}.
(1)若A∪B=A,求實數(shù)m的取值;
(2)若A∩B={x|0≤x≤3},求實數(shù)m的值;
(3)若A,求實數(shù)m的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知定義在R上的偶函數(shù)f(x)和奇函數(shù)g(x)滿足.
(1)求函數(shù)f(x)和g(x)的表達式;
(2)當(dāng)時,不等式恒成立,求實數(shù)a的取值范圍;
(3)若方程在上恰有一個實根,求實數(shù)m的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】以下給出了4個命題:
(1)兩個長度相等的向量一定相等;
(2)相等的向量起點必相同;
(3)若,且,則;
(4)若向量的模小于的模,則.
其中正確命題的個數(shù)共有( )
A.3 個B.2 個C.1 個D.0個
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com