【題目】已知函數(shù)為奇函數(shù),且的極小值為.為函數(shù)的導(dǎo)函數(shù).

1)求的值;

2)若關(guān)于的方程有三個(gè)不等的實(shí)數(shù)根,求實(shí)數(shù)的取值范圍.

【答案】1,;(2

【解析】

1)由為奇函數(shù)可得,然后將代入中,求出的極小值,根據(jù)的極小值為,可求出,的值;

2)構(gòu)造函數(shù),將問(wèn)題轉(zhuǎn)化為軸有三個(gè)交點(diǎn)的問(wèn)題,根據(jù)的單調(diào)性可得,從而求出的取值范圍.

解:(1)因?yàn)?/span>是奇函數(shù),

所以恒成立,

,

所以,

所以,

,解得,

當(dāng)時(shí),,

當(dāng)時(shí),,

單調(diào)遞減,在單調(diào)遞增,

所以的極小值為

,

解得

所以,,

2)由(1)可知,,

方程,

即為,

即方程有三個(gè)不等的實(shí)數(shù)根,

設(shè),只要使曲線有3個(gè)零點(diǎn)即可,

設(shè),

分別為的極值點(diǎn),

當(dāng)時(shí),

,上單調(diào)遞增,

當(dāng)時(shí),

上單調(diào)遞減,

所以,為極大值點(diǎn),為極小值點(diǎn).

所以要使曲線與軸有3個(gè)交點(diǎn),當(dāng)且僅當(dāng)

,

解得.

即實(shí)數(shù)的取值范圍為.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】某大型單位舉行了一次全體員工都參加的考試,從中隨機(jī)抽取了20人的分?jǐn)?shù).以下莖葉圖記錄了他們的考試分?jǐn)?shù)(以十位數(shù)字為莖,個(gè)位數(shù)字為葉):若分?jǐn)?shù)不低于95分,則稱該員工的成績(jī)?yōu)椤皟?yōu)秀”.

組別

分組

頻數(shù)

頻率

1

2

3

4

(Ⅰ)從這20人中成績(jī)?yōu)椤皟?yōu)秀”的員工中任取2人,求恰有1人的分?jǐn)?shù)為96的概率;

(Ⅱ)根據(jù)這20人的分?jǐn)?shù)補(bǔ)全頻率分布表和頻率分布直方圖,并根據(jù)頻率分布直方圖估計(jì)所有員工的平均分?jǐn)?shù)(同一組中的數(shù)據(jù)用該組區(qū)間的中點(diǎn)值作代表).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】某工廠為提高生產(chǎn)效率,需引進(jìn)一條新的生產(chǎn)線投入生產(chǎn),現(xiàn)有兩條生產(chǎn)線可供選擇,生產(chǎn)線①:有A,B兩道獨(dú)立運(yùn)行的生產(chǎn)工序,且兩道工序出現(xiàn)故障的概率依次是0.02,0.03.若兩道工序都沒(méi)有出現(xiàn)故障,則生產(chǎn)成本為15萬(wàn)元;若A工序出現(xiàn)故障,則生產(chǎn)成本增加2萬(wàn)元;若B工序出現(xiàn)故障,則生產(chǎn)成本增加3萬(wàn)元;若A,B兩道工序都出現(xiàn)故障,則生產(chǎn)成本增加5萬(wàn)元.生產(chǎn)線②:有a,b兩道獨(dú)立運(yùn)行的生產(chǎn)工序,且兩道工序出現(xiàn)故障的概率依次是0.040.01.若兩道工序都沒(méi)有出現(xiàn)故障,則生產(chǎn)成本為14萬(wàn)元;若a工序出現(xiàn)故障,則生產(chǎn)成本增加8萬(wàn)元;若b工序出現(xiàn)故障,則生產(chǎn)成本增加5萬(wàn)元;若ab兩道工序都出現(xiàn)故障,則生產(chǎn)成本增加13萬(wàn)元.

1)若選擇生產(chǎn)線①,求生產(chǎn)成本恰好為18萬(wàn)元的概率;

2)為最大限度節(jié)約生產(chǎn)成本,你會(huì)給工廠建議選擇哪條生產(chǎn)線?請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】在極坐標(biāo)系中,已知曲線,

1)求曲線、的直角坐標(biāo)方程,并判斷兩曲線的形狀;

2)若曲線、交于兩點(diǎn),求兩交點(diǎn)間的距離.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù).

(1)討論函數(shù)的單調(diào)區(qū)間;

(2)證明:.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】點(diǎn)是直線上的動(dòng)點(diǎn),過(guò)點(diǎn)的直線與拋物線相切,切點(diǎn)分別是、.

1)證明:直線過(guò)定點(diǎn);

2)以為直徑的圓過(guò)點(diǎn),求點(diǎn)的坐標(biāo)及圓的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知在直角坐標(biāo)系中,曲線的參數(shù)方程為為參數(shù)),以為極點(diǎn),軸正半軸為極軸建立極坐標(biāo)系,曲線的極坐標(biāo)方程為.

1)求曲線的普通方程與曲線的直角坐標(biāo)方程;

2)曲線與曲線有兩個(gè)公共點(diǎn),求實(shí)數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,多面體中,面為矩形,面,.

1)求證:面

2)已知多面體各頂點(diǎn)均在同一球面上,且該球的表面積為,當(dāng)這個(gè)多面體的體積取得最大值時(shí)求其側(cè)視圖的面積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】在四棱錐中,是等邊三角形,點(diǎn)在棱上,平面平面

1)求證:平面平面;

2)若,求直線與平面所成角的正弦值的最大值;

3)設(shè)直線與平面相交于點(diǎn),若,求的值.

查看答案和解析>>

同步練習(xí)冊(cè)答案