精英家教網 > 高中數學 > 題目詳情

如圖,F1,F2是離心率為的橢圓C:(a>b>0)的左、右焦點,直線:x=-將線段F1F2分成兩段,其長度之比為1 : 3.設A,B是C上的兩個動點,線段AB的中垂線與C交于P,Q兩點,線段AB的中點M在直線l上.

(Ⅰ) 求橢圓C的方程;
(Ⅱ) 求的取值范圍.

(Ⅰ)  (Ⅱ) [,

解析試題分析: (Ⅰ) 設F2(c,0),則

,所以c=1.
因為離心率e=,所以a=
所以橢圓C的方程為.                       6分
(Ⅱ) 當直線AB垂直于x軸時,直線AB方程為x=-,此時P(,0)、Q(,0)

當直線AB不垂直于x軸時,設直線AB的斜率為k,M(-,m) (m≠0),A(x1,y1),B(x2,y2).
 得(x1+x2)+2(y1+y2)=0,
則-1+4mk=0,故k=
此時,直線PQ斜率為,PQ的直線方程為

聯立 消去y,整理得
所以
于是(x1-1)(x2-1)+y1y2



令t=1+32m2,1<t<29,則
又1<t<29,所以
綜上,的取值范圍為[,).                     15分
考點:本題主要考查橢圓的幾何性質,直線與橢圓的位置關系等基礎知識,同時考查解析幾何的基本思想方法和綜合解題能力。
點評:圓錐曲線問題每年高考都在壓軸題的位置出現,難度較大,但是一般也離不開直線與圓聯立方程,運算量較大,要注意數形結合、設而不求等方法的應用.

練習冊系列答案
相關習題

科目:高中數學 來源: 題型:解答題

如圖,已知橢圓,是長軸的左、右端點,動點滿足,聯結,交橢圓于點

(1)當時,設,求的值;
(2)若為常數,探究滿足的條件?并說明理由;
(3)直接寫出為常數的一個不同于(2)結論類型的幾何條件.

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

在直接坐標系中,直線的方程為,曲線的參數方程為為參數).
(I)已知在極坐標(與直角坐標系取相同的長度單位,且以原點為極點,以軸正半軸為極軸)中,點的極坐標為(4,),判斷點與直線的位置關系;
(II)設點是曲線上的一個動點,求它到直線的距離的最小值.

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

已知點到兩點的距離之和等于4,設點的軌跡為,直線與軌跡交于兩點.
(Ⅰ)寫出軌跡的方程;
(Ⅱ)求的值.

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

已知是橢圓的左、右焦點,是橢圓上位于第一象限內的一點,點也在橢圓上,且滿足是坐標原點),,若橢圓的離心率為.
(1)若的面積等于,求橢圓的方程;
(2)設直線與(1)中的橢圓相交于不同的兩點,已知點的坐標為(),點在線段的垂直平分線上,且,求的值.

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

已知點,動點滿足.
(1)求動點P的軌跡方程; 
(2)設(1)中所求軌跡與直線交于點、兩點 ,求證(為原點)。

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

橢圓的離心率為,兩焦點分別為,點M是橢圓C上一點,的周長為16,設線段MO(O為坐標原點)與圓交于點N,且線段MN長度的最小值為.
(1)求橢圓C以及圓O的方程;
(2)當點在橢圓C上運動時,判斷直線與圓O的位置關系.

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

已知點B(0,1),點C(0,—3),直線PB、PC都是圓的切線(P點不在y軸上).
(I)求過點P且焦點在x軸上拋物線的標準方程;
(II)過點(1,0)作直線與(I)中的拋物線相交于M、N兩點,問是否存在定點R,使為常數?若存在,求出點R的坐標與常數;若不存在,請說明理由。

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

平面內與兩定點連線的斜率之積等于非零常數的點的軌跡,加上 兩點,所成的曲線可以是圓,橢圓或雙曲線.
(Ⅰ)求曲線的方程,并討論的形狀與值的關系;
(Ⅱ)當時,對應的曲線為;對給定的,對應的曲線為,若曲線的斜率為的切線與曲線相交于兩點,且為坐標原點),求曲線的方程.

查看答案和解析>>

同步練習冊答案