已知等差數(shù)列{an}是遞增數(shù)列,且滿足a4·a7=15,a3+a8=8.
(1)求數(shù)列{an}的通項(xiàng)公式;
(2)令bn(n≥2),b1,求數(shù)列{bn}的前n項(xiàng)和Sn.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知是公差不為零的等差數(shù)列,,且的等比中項(xiàng),求:
(1)數(shù)列的通項(xiàng)公式;
(2).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知等差數(shù)列的公差不為零,其前n項(xiàng)和為,若=70,且成等比數(shù)列,
(1)求數(shù)列的通項(xiàng)公式;
(2)設(shè)數(shù)列的前n項(xiàng)和為,求證:

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

設(shè)無窮數(shù)列{an}滿足:?n∈Ν?,an<an+1,an∈N?.記bn=aan,cn=aan+1(n∈N*).
(1)若bn=3n(n∈N*),求證:a1=2,并求c1的值;
(2)若{cn}是公差為1的等差數(shù)列,問{an}是否為等差數(shù)列,證明你的結(jié)論.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

設(shè)為數(shù)列的前項(xiàng)和,對任意的,都有為常數(shù),且.
(1)求證:數(shù)列是等比數(shù)列;
(2)設(shè)數(shù)列的公比,數(shù)列滿足,,求數(shù)列的通項(xiàng)公式;
(3)在滿足(2)的條件下,求數(shù)列的前項(xiàng)和.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

設(shè){an}是公比不為1的等比數(shù)列,其前n項(xiàng)和為Sn,且a5,a3,a4成等差數(shù)列.
(1)求數(shù)列{an}的公比;
(2)證明:對任意k∈N,Sk+2,Sk,Sk+1成等差數(shù)列.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知等差數(shù)列{an}的前n項(xiàng)和為Sn,n∈N*,且滿足a2+a4=14,S7=70.
(1)求數(shù)列{an}的通項(xiàng)公式;
(2)若bn,則數(shù)列{bn}的最小項(xiàng)是第幾項(xiàng),并求該項(xiàng)的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

設(shè)函數(shù)f(x)=(x>0),數(shù)列{an}滿足a1=1,anf (n∈N*,且n≥2).
(1)求數(shù)列{an}的通項(xiàng)公式;
(2)設(shè)Tna1a2a2a3a3a4a4a5+…+(-1)n-1·anan+1,若Tntn2n∈N*恒成立,求實(shí)數(shù)t的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

設(shè)正項(xiàng)數(shù)列{an}的前n項(xiàng)和是Sn,若{an}和{}都是等差數(shù)列,且公差相等.
(1)求{an}的通項(xiàng)公式;
(2)若a1,a2,a5恰為等比數(shù)列{bn}的前三項(xiàng),記數(shù)列cn,數(shù)列{cn}的前n項(xiàng)和為Tn,求Tn.

查看答案和解析>>

同步練習(xí)冊答案