設向量
i
j
為直角坐標系的x軸、y軸正方向上的單位向量,若向量
a
=(x+3)
i
+y
j
,
b
=(x-3)
i
+y
j
,且|
a
|-|
b
|=2
,則滿足上述條件的點P(x,y)的軌跡方程是
 
分析:利用已知條件得出向量的坐標是解決本題的關鍵,然后利用已知條件向量長度的關系得出x,y的關系式,進而求出點P(x,y)的軌跡方程.
解答:解:由題意得出
a
=(x+3,y)
,
b
=(x-3,y)
滿足|
a
|-|
b
|=2
,則得出
(x+3)2+y2
-
(x-3)2+y2
=2

表示點P(x,y)與點(-3,0)之間的距離減去點P(x,y)與點(3,0)距離的差為2(定植),并且該定值小于點(-3,0)與點(3,0)之間的距離,故該動點P在以點(-3,0)、點(3,0)為焦點的雙曲線右支上,并且實軸長為2,因此虛半軸長為
32-1
=
8
,故所求的點P(x,y)的軌跡方程是x2-
y2
8
=1(x>0)
或者(x≥1).
故答案為:x2-
y2
8
=1(x>0)
或者(x≥1).
點評:本題考查動點軌跡方程的求法,考查學生的轉化與化歸思想,關鍵要通過向量坐標得出動點的坐標滿足的曲線類型,利用圓錐曲線的定義求出所要求的軌跡方程.
練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

設向量i、j為直角坐標系的x軸、y軸正方向上的單位向量,若向量
a
=(x+1)i+yj,
b
=(x-1)i+yj,且|
a
|-|
b
|=1,則滿足上述條件的點P(x,y)的軌跡方程是( 。
A、
x2
1
4
-
y2
3
4
=1(y≥0)
B、
x2
1
4
-
y2
3
4
=1(x≥0)
C、
y2
1
4
-
x2
3
4
=1(y≥0)
D、
y2
1
4
-
x2
3
4
=1(x≥0)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

設向量
i
,
j
為直角坐標系的x軸、y軸正方向上的單位向量,若向量
a
=(x+1)
i
+y
j
,
b
=(x-1)
i
+y
j
,且|
a
|-|
b
|=1,則滿足上述條件的點P(x,y)的軌跡方程是
x2
1
4
-
y2
3
4
=1(x≥0)
x2
1
4
-
y2
3
4
=1(x≥0)

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:單選題

設向量i、j為直角坐標系的x軸、y軸正方向上的單位向量,若向量
a
=(x+1)i+yj,
b
=(x-1)i+yj,且|
a
|-|
b
|=1,則滿足上述條件的點P(x,y)的軌跡方程是( 。
A.
x2
1
4
-
y2
3
4
=1(y≥0)
B.
x2
1
4
-
y2
3
4
=1(x≥0)
C.
y2
1
4
-
x2
3
4
=1(y≥0)
D.
y2
1
4
-
x2
3
4
=1(x≥0)

查看答案和解析>>

科目:高中數(shù)學 來源:《第2章 圓錐曲線與方程》2010年單元測試卷(5)(解析版) 題型:選擇題

設向量i、j為直角坐標系的x軸、y軸正方向上的單位向量,若向量=(x+1)i+yj,=(x-1)i+yj,且||-||=1,則滿足上述條件的點P(x,y)的軌跡方程是( )
A.-=1(y≥0)
B.-=1(x≥0)
C.-=1(y≥0)
D.-=1(x≥0)

查看答案和解析>>

同步練習冊答案