【題目】設(shè)定義且為常數(shù)),若 , .下述四個(gè)命題:
① 不存在極值;
②若函數(shù) 與函數(shù) 的圖象有兩個(gè)交點(diǎn),則 ;
③若在 上是減函數(shù),則實(shí)數(shù) 的取值范圍是 ;
④若 ,則在的圖象上存在兩點(diǎn),使得在這兩點(diǎn)處的切線(xiàn)互相垂直
A. ①③④B. ②③④C. ②③D. ②④
【答案】C
【解析】
對(duì)命題①:直接求的導(dǎo)數(shù),采用零點(diǎn)存在定理判斷是否存在極值即可
對(duì)②若函數(shù) 與函數(shù) 的圖象有兩個(gè)交點(diǎn),則函數(shù)一定與相切,通過(guò)聯(lián)立方程求解即可
對(duì)③④,需要先求出的導(dǎo)函數(shù),根據(jù)導(dǎo)函數(shù)特點(diǎn)去判斷兩命題是否成立
對(duì)命題①:,,即,使得, 存在極值,命題①錯(cuò)
對(duì)命題②,畫(huà)出 與函數(shù)的圖像,如圖所示:
設(shè)切點(diǎn)橫坐標(biāo)為,此時(shí),命題②正確
對(duì)于命題③:,則,
若在上是減函數(shù),則對(duì)于恒成立,
即恒成立, ,
恒成立,
,
;
即實(shí)數(shù)a的取值范圍是,故③正確
對(duì)命題④:當(dāng)時(shí),,
設(shè)是曲線(xiàn)上的任意兩點(diǎn),
,
,
不成立.
的曲線(xiàn)上不存的兩點(diǎn),使得過(guò)這兩點(diǎn)的切線(xiàn)點(diǎn)互相垂直。命題④錯(cuò)誤
正確命題為②③,答案選C
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù)()的圖象在處的切線(xiàn)為(為自然對(duì)數(shù)的底數(shù))
(1)求的值;
(2)若,且對(duì)任意恒成立,求的最大值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知線(xiàn)段的端點(diǎn)的坐標(biāo)是,端點(diǎn)在圓上運(yùn)動(dòng).
(Ⅰ)求線(xiàn)段的中點(diǎn)的軌跡的方程;
(Ⅱ)設(shè)圓與曲線(xiàn)的兩交點(diǎn)為,求線(xiàn)段的長(zhǎng);
(Ⅲ)若點(diǎn)在曲線(xiàn)上運(yùn)動(dòng),點(diǎn)在軸上運(yùn)動(dòng),求的最小值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知橢圓的右焦點(diǎn)為,離心率為。
(1)求橢圓的標(biāo)準(zhǔn)方程;
(2)是橢圓上不同的三點(diǎn),若直線(xiàn)的斜率之積為,試問(wèn)從兩點(diǎn)的橫坐標(biāo)之和是否為定值?若是,求出這個(gè)定值;若不是,請(qǐng)說(shuō)明理由。
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù)f(x)=2x,x∈R.
(1)當(dāng)m取何值時(shí),方程|f(x)-2|=m有一個(gè)解??jī)蓚(gè)解?
(2)若不等式[f(x)]2+f(x)-m>0在R上恒成立,求m的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知過(guò)拋物線(xiàn)的焦點(diǎn),斜率為的直線(xiàn)交拋物線(xiàn)于兩點(diǎn),且.
(1)求該拋物線(xiàn)的方程;
(2) 為坐標(biāo)原點(diǎn),為拋物線(xiàn)上一點(diǎn),若,求的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】在上的函數(shù)滿(mǎn)足:①(為正常數(shù));②當(dāng)時(shí),,若的圖象上所有極大值對(duì)應(yīng)的點(diǎn)均落在同一條直線(xiàn)上,則___.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】在平面直角坐標(biāo)系中,已知圓與圓關(guān)于直線(xiàn)對(duì)稱(chēng).
(1)求直線(xiàn)的方程;
(2)設(shè)圓與圓交于點(diǎn)、,點(diǎn)為圓上的動(dòng)點(diǎn),求面積的最大值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知數(shù)列的前項(xiàng)和為,且滿(mǎn)足:
(1)證明:是等比數(shù)列,并求數(shù)列的通項(xiàng)公式.
(2)設(shè),若數(shù)列是等差數(shù)列,求實(shí)數(shù)的值;
(3)在(2)的條件下,設(shè) 記數(shù)列的前項(xiàng)和為,若對(duì)任意的存在實(shí)數(shù),使得,求實(shí)數(shù)的最大值.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話(huà):027-86699610 舉報(bào)郵箱:58377363@163.com