設(shè)數(shù)列{an}是公差為d的等差數(shù)列,其前n項(xiàng)和為Sn.已知a1=1,d=2,
①求當(dāng)n∈N*時(shí),
Sn+64
n
的最小值;
②證明:由①知Sn=n2,當(dāng)n∈N*時(shí),
2
s1s3
+
3
s2s4
…+
n+1
SnSn+2
5
16
分析:①通過等差數(shù)列的知識(shí)可求和,由基本不等式可得最值;②把①求到的和代入,由裂項(xiàng)相消法可求和,由不等式的放縮法可得結(jié)論.
解答:解:①∵a1=1,d=2,∴Sn=na1+
n(n-1)
2
d
=n2,
Sn+64
n
=
n2+64
n
=n+
64
n
2
64
n
=16
當(dāng)且僅當(dāng)n=
64
n
即n=8時(shí),上式取等號(hào),
Sn+64
n
的最小值是16;
②證明:由①知Sn=n2,當(dāng)n∈N*時(shí),
n+1
SnSn+2
=
n+1
n2(n+2)2
=
1
4
[
1
n2
-
1
(n+2)2
]
,
2
s1s3
+
3
s2s4
…+
n+1
SnSn+2

=
1
4
[
1
12
-
1
32
+
1
22
-
1
42
+
1
32
-
1
52
+…+
1
n2
-
1
(n+2)2
]
=
1
4
[
1
12
+
1
22
-
1
(n+1)2
-
1
(n+2)2
]
,
1
(n+1)2
+
1
(n+2)2
>0

2
s1s3
+
3
s2s4
…+
n+1
SnSn+2
1
4
(
1
12
+
1
22
)
=
5
16

故命題得證.
點(diǎn)評(píng):本題為數(shù)列和基本不等式的結(jié)合,涉及裂項(xiàng)相消法求和,屬中檔題.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)數(shù)列{an}是公差不為0的等差數(shù)列,Sn為前n項(xiàng)和,滿足a3,2a5,a12成等差數(shù)列,S10=60.
(1)求數(shù)列{an}的通項(xiàng)公式及前n項(xiàng)和Sn
(2)試求|a1|+|a2|+|a3|+…+|an|.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)數(shù)列{an}是公差不為0的等差數(shù)列,a1=1且a1,a3,a6成等比數(shù)列,則{an}的前n項(xiàng)和Sn等于( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2012•德州一模)設(shè)數(shù)列{an}是公差不為0的等差數(shù)列,a1=1且a1,a3,a6成等比數(shù)列,則數(shù)列{an}的前n項(xiàng)和Sn=
1
8
n2+
7
8
n
1
8
n2+
7
8
n

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2013•南京二模)設(shè)數(shù)列{an}是公差不為0的等差數(shù)列,Sn為其前n項(xiàng)和,若
a
2
1
+
a
2
2
=
a
2
3
+
a
2
4
,S5=5,則a7的值為
9
9

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)數(shù)列{an}是公差不為0的等差數(shù)列,Sn為前n項(xiàng)和,滿足a3,2a5,a12 成等差數(shù)列,S10=60.
(1)求數(shù)列{an}的通項(xiàng)公式及前n項(xiàng)和Sn;
(2)試求所有正整數(shù)m,使
am+12+2am
為數(shù)列{an}中的項(xiàng).

查看答案和解析>>

同步練習(xí)冊(cè)答案