[番茄花園1] 已知m是非零實(shí)數(shù),拋物線(p>0)
的焦點(diǎn)F在直線上。
(I)若m=2,求拋物線C的方程
(II)設(shè)直線與拋物線C交于A、B,△A,△的重心分別為G,H
求證:對(duì)任意非零實(shí)數(shù)m,拋物線C的準(zhǔn)線與x軸的焦點(diǎn)在以線段GH為直徑的圓外。
[番茄花園1]1.
[番茄花園1] .解析:本題主要考查拋物線幾何性質(zhì),直線與拋物線、點(diǎn)與圓的位置關(guān)系等基礎(chǔ)知識(shí),同時(shí)考查解析幾何的基本思想方法和運(yùn)算求解能力。
(Ⅰ)解:因?yàn)榻裹c(diǎn)F(,0)在直線l上,
得
又m=2,故
所以拋物線C的方程為
設(shè)A(x1,y1) , B(x2,y2)
由消去x得
ym3y-m4=0,
由于m≠0,故=4m6+4m4>0,
且有y1+y2=2m3,y1y2=-m4,
設(shè)M1,M2分別為線段AA1,BB1的中點(diǎn),
由于2
可知G(),H(),
所以
所以GH的中點(diǎn)M.
設(shè)R是以線段GH為直徑的圓的半徑,
則
設(shè)拋物線的標(biāo)準(zhǔn)線與x軸交點(diǎn)N,
則
=m4(m4+8 m2+4)
=m4[(m2+1)( m2+4)+3m2]
>m2 (m2+1)( m2+4)=R2.
故N在以線段GH為直徑的圓外.
[番茄花園1]22.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com