【題目】有人在路邊設局,宣傳牌上寫有“擲骰子,贏大獎”.其游戲規(guī)則是這樣的:你可以在1,2,3,4,5,6點中任選一個,并押上賭注元,然后擲1顆骰子,連續(xù)擲3次,若你所押的點數(shù)在3次擲骰子過程中出現(xiàn)1次,2次,3次,那么原來的賭注仍還給你,并且莊家分別給予你所押賭注的1倍,2倍,3倍的獎勵.如果3次擲骰子過程中,你所押的點數(shù)沒出現(xiàn),那么你的賭注就被莊家沒收.

(1)求擲3次骰子,至少出現(xiàn)1次為5點的概率;

(2)如果你打算嘗試一次,請計算一下你獲利的期望值,并給大家一個正確的建議.

【答案】(1);(2)見解析

【解析】

(1)擲3次骰子,至少出現(xiàn)1次為5點的對立事件是3次都沒有出現(xiàn)5點,根據對立事件的性質,能求出擲3次骰子,至少出現(xiàn)1次為5點的概率.

(2)試玩游戲,設獲利ξ元,則ξ的可能取值為m,2m,3m,-m,分別求出相應的概率,由此能求出Eξ= <0,建議大家不要嘗試

(1)根據對立事件的性質,所求概率為.

(2)試玩游戲,設獲利元,則的可能取值為,且

所以.

顯然,因此建議大家不要嘗試.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

【題目】已知定義在R上的單調函數(shù)f(x)滿足對任意的x1 , x2 , 都有f(x1+x2)=f(x1)+f(x2)成立.若正實數(shù)a,b滿足f(a)+f(2b﹣1)=0,則 的最小值為

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知定義在R上的可導函數(shù)f(x)滿足f′(x)+f(x)<0,設a=f(m﹣m2),b=e f(1),則a,b的大小關系是(
A.a>b
B.a<b
C.a=b
D.a,b的大小與m的值有關

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知向量a=(1,sin x),b=,函數(shù)f(x)=a·b-cos 2x.

(1)求函數(shù)f(x)的解析式及其單調遞增區(qū)間;

(2)x,求函數(shù)f(x)的值域.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖,已知直線的右焦點,且交橢圓兩點,點在直線上的射影依次為點.

(Ⅰ)已知拋物線的焦點為橢圓的上頂點。

①求橢圓的方程;

若直線軸于點,且,當變化時,求的值;

(Ⅱ)連接,試探索當變化時,直線是否相交于一定點?若交于定點,請求出點的坐標并給予證明;否則說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】為了解甲、乙兩個班級某次考試的數(shù)學成績(單位:分),從甲、乙兩個班級中分別隨機抽取5名學生的成績作樣本,如圖是樣本的莖葉圖.規(guī)定:成績不低于120分時為優(yōu)秀成績.

(1)從甲班的樣本中有放回的隨機抽取 2 個數(shù)據,求其中只有一個優(yōu)秀成績的概率;
(2)從甲、乙兩個班級的樣本中分別抽取2名同學的成績,記獲優(yōu)秀成績的人數(shù)為ξ,求ξ的分布列和數(shù)學期望Eξ.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】選修4-5:不等式選講

已知函數(shù),.

(1)當時,解關于的不等式;

(2)若對任意,都存在,使得不等式成立,求實數(shù)的取值范圍.

查看答案和解析>>

同步練習冊答案