【題目】在平面直角坐標系中,圓的參數(shù)方程為(為參數(shù)),以坐標原點為極點,軸正半軸為極軸建立極坐標系,直線的極坐標方程為.
(1)求圓的普通方程和直線的直角坐標方程;
(2)設(shè)是直線上任意一點,過作圓切線,切點為,,求四邊形(點為圓的圓心)面積的最小值.
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在平面直角坐標系xOy中,已知R為圓上的一動點,R在x軸,y軸上的射影分別為點S,T,動點P滿足,記動點P的軌跡為曲線C,曲線C與x軸交于A,B兩點.
(1)求曲線C的方程;
(2)已知直線AP,BP分別交直線于點M,N,曲線C在點Р處的切線與線段MN交于點Q,求的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知橢圓的左、右焦點為,點在橢圓上.
(1)設(shè)點到直線的距離為,證明:為定值;
(2)若是橢圓上的兩個動點(都不與重合),直線的斜率互為相反數(shù),求直線的斜率(結(jié)果用表示)
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在以ABCDEF為頂點的五面體中,底面ABCD為菱形,∠ABC=120°,AB=AE=ED=2EF,EFAB,點G為CD中點,平面EAD⊥平面ABCD.
(1)證明:BD⊥EG;
(2)若三棱錐,求菱形ABCD的邊長.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某城市戶居民的月平均用電量(單位:度),以,,,,,,分組的頻率分布直方圖如圖.
(1)求直方圖中的值;
(2)求月平均用電量的眾數(shù)和中位數(shù);
(3)在月平均用電量為,,,的四組用戶中,用分層抽樣的方法抽取戶居民,則月平均用電量在的用戶中應(yīng)抽取多少戶?
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某地區(qū)2007年至2013年農(nóng)村居民家庭純收入y(單位:千元)的數(shù)據(jù)如下表:
年份 | 2007 | 2008 | 2009 | 2010 | 2011 | 2012 | 2013 |
年份代號t | 1 | 2 | 3 | 4 | 5 | 6 | 7 |
人均純收入y | 2.9 | 3.3 | 3.6 | 4.4 | 4.8 | 5.2 | 5.9 |
(1)求y關(guān)于t的線性回歸方程;
(2)利用(1)中的回歸方程,分析2007年至2013年該地區(qū)農(nóng)村居民家庭人均純收入的變化情況,并預(yù)測該地區(qū)2015年農(nóng)村居民家庭人均純收入.
附:回歸直線的斜率和截距的最小二乘法估計公式分別為:
,
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知在平面直角坐標系中,動點P到定點F(1,0)的距離比到定直線x=-2的距離小1.
(1)求動點P的軌跡C的方程;
(2)若直線l與(1)中軌跡C交于A,B兩點,通過A和原點O的直線交直線x=-1于D,求證:直線DB平行于x軸.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某企業(yè)引進現(xiàn)代化管理體制,生產(chǎn)效益明顯提高。2018年全年總收入與2017年全年總收入相比增長了一倍,實現(xiàn)翻番.同時該企業(yè)的各項運營成本也隨著收入的變化發(fā)生了相應(yīng)變化。下圖給出了該企業(yè)這兩年不同運營成本占全年總收入的比例,下列說法正確的是( )
A.該企業(yè)2018年設(shè)備支出金額是2017年設(shè)備支出金額的一半
B.該企業(yè)2018年支付工資金額與2017年支付工資金額相當
C.該企業(yè)2018年用于研發(fā)的費用是2017年用于研發(fā)的費用的五倍
D.該企業(yè)2018年原材料的費用是2017年原材料的費用的兩倍
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com