【題目】棱長為2的正方體ABCDA1B1C1D1中,E,F分別是DD1DB的中點,G在棱CD上,且CGCD

1)證明:EFB1C;

2)求cos,

【答案】(1)證明見解析 (2)

【解析】

(1)可分別以,,,軸,建立空間直角坐標系,從而得出,0,,,1,,,2,,,2,,,2,,進而可求出的坐標,只需求出即可;

(2)根據(jù)即可求出點的坐標,從而得出向量的坐標,根據(jù)即可求出的值.

分別以三直線DA,DC,DD1xy,z軸,建立如圖所示的空間直角坐標系,

則:E(0,0,1),F(1,1,0),B1(2,2,2),C(0,2,0),C1(0,2,2),

(1)證明:∵,

,

,

EFB1C;

(2)∵,

,

,,

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:

【題目】如圖在四邊形PBCD中,,,,沿AB把三角形PAB折起,使PD兩點的距離為10,得到如圖所示圖形.

求證:平面平面PAC;

若點EPD的中點,求三棱錐的體積.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】在平面直角坐標系,的頂點為坐標原點,始邊與軸的非負半軸重合,終邊交單位圓于點,,的值是______.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】某校高二奧賽班N名學生的物理測評成績(滿分120分)分布直方圖如下,已知分數(shù)在100~110的學生數(shù)有21人。

(Ⅰ)求總?cè)藬?shù)N和分數(shù)在110~115分的人數(shù)n;

(Ⅱ)現(xiàn)準備從分數(shù)在110~115分的n名學生(女生占)中任選2人,求其中恰好含有一名女生的概率;

(Ⅲ)為了分析某個學生的學習狀態(tài),對其下一階段的學習提供指導性建議,對他前7次考試的數(shù)學成績x(滿分150分),物理成績y進行分析,下面是該生7次考試的成績。

數(shù)學

88

83

117

92

108

100

112

物理

94

91

108

96

104

101

106

已知該生的物理成績y與數(shù)學成績x是線性相關(guān)的,若該生的數(shù)學成績達到130分,請你估計他的物理成績大約是多少?

附:對于一組數(shù)據(jù)其回歸線的斜率和截距的最小二乘估計分別為

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】在直角坐標系中,曲線C的方程為.以坐標原點為極點,軸正半軸為極軸建立極坐標系,直線的極坐標方程為

(1)求曲線C的參數(shù)方程和直線的直角坐標方程;

(2)若直線軸和y軸分別交于A,B兩點,P為曲線C上的動點,求PAB面積的最大值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】若在兩個成語中,一個成語的末字恰是另一成語的首字,則稱這兩個成語有頂真關(guān)系,現(xiàn)從分別貼有成語人定勝天、爭先恐后、一馬當先、天馬行空先發(fā)制人5張大小形狀完全相同卡片中,任意抽取2張,則這2張卡片上的成語有頂真關(guān)系的概率為(  )

A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】201611日,我國全面實行二孩政策,某機構(gòu)進行了街頭調(diào)查,在所有參與調(diào)查的青年男女中,持響應(yīng)”“猶豫不響應(yīng)態(tài)度的人數(shù)如表所示:

響應(yīng)

猶豫

不響應(yīng)

男性青年

500

300

200

女性青年

300

200

300

1)根據(jù)已知條件完成下面的2×2列聯(lián)表,并判斷能否有97.5%的把握認為猶豫與否與性別有關(guān);

猶豫

不猶豫

總計

男性青年

   

   

   

女性青年

   

   

   

總計

   

   

1800

2)以表中頻率作為概率,若從街頭隨機采訪青年男女各2人,求4人中響應(yīng)的人數(shù)恰好是不響應(yīng)的人數(shù)(不響應(yīng)的人數(shù)不為0)的2倍的概率.

參考公式:

參考數(shù)據(jù):

PK2k0

0.150

0.100

0.050

0.025

0.010

k0

2.072

2.706

3.841

5.024

6.635

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】若點P是函數(shù)上任意一點,則點P到直線的最小距離為 ( )

A. B. C. D. 3

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】設(shè)圓的圓心為,直線過點且與軸不重合,直線交圓兩點,過點的平行線交于點.

1)證明為定值,并寫出點的軌跡方程;

2)設(shè)點的軌跡為曲線,直線,兩點,過點且與直線垂直的直線與圓交于,兩點,求四邊形面積的取值范圍.

查看答案和解析>>

同步練習冊答案