如圖,在直三棱柱A1B1C1-ABC中,AB⊥AC,AB=AC=2,A1A=4,點D是BC的中點.
(1)求異面直線A1B與C1D所成角的余弦值;
(2)求平面ADC1與平面ABA1夾角的正弦值.
科目:高中數(shù)學(xué) 來源: 題型:解答題
如圖(1),在三角形ABC中,BA=BC=2√乏,ZABC=900,點0,M,N分別為線段的中點,將AABO和AMNC分別沿BO,MN折起,使平面ABO與平面CMN都與底面OMNB垂直,如圖(2)所示.
(1)求證:AB//平面CMN;
(2)求平面ACN與平面CMN所成角的余
(3)求點M到平面ACN的距離.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
如圖,在四棱柱ABCD-A1B1C1D1中,側(cè)棱AA1⊥底面ABCD,AB∥DC,
.
(Ⅰ)求證:CD⊥平面ADD1A1;
(Ⅱ)若直線AA1與平面AB1C所成角的正弦值為,求k的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
如圖1,直角梯形中,,分別為邊和上的點,且,.將四邊形沿折起成如圖2的位置,使.
(1)求證:平面;
(2)求平面與平面所成銳角的余弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
如圖,已知四棱錐P-ABCD的底面ABCD是菱形,且PC⊥平面ABCD,PC=AC=2,E是PA的中點。
(1)求證:AC⊥平面BDE;
(2)若直線PA與平面PBC所成角為30°,求二面角P-AD-C的正切值;
(3)求證:直線PA與平面PBD所成的角φ為定值,并求sinφ值。
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
在長方體ABCD—A1B1C1D1中,,點E是棱AB上一點.且.
(1)證明:;
(2)若二面角D1—EC—D的大小為,求的值.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com