已知橢圓C:=1(a>b>0)的離心率為,橢圓短軸的一個(gè)端點(diǎn)與兩個(gè)焦點(diǎn)構(gòu)成的三角形的面積為
(1)求橢圓C的方程;
(2)已知?jiǎng)又本y=k(x+1)與橢圓C相交于A,B兩點(diǎn).
①若線段AB中點(diǎn)的橫坐標(biāo)為-,求斜率k的值;
②已知點(diǎn)M(-,0),求證:·為定值.
(1)=1
(2)①±       ②見解析
(1)=1(a>b>0)滿足a2=b2+c2,又,×b×2c=
解得a2=5,b2,則橢圓方程為=1.
(2)設(shè)A(x1,y1),B(x2,y2).
①將y=k(x+1)代入=1,
得(1+3k2)x2+6k2x+3k2-5=0,
∴Δ=48k2+20>0,x1+x2=-,
∵AB中點(diǎn)的橫坐標(biāo)為-,
∴-=-1,解得k=±
②由(1)知x1+x2=-,x1x2,
·=(x1,y1)·(x2,y2)
=(x1)(x2)+y1y2
=(x1)(x2)+k2(x1+1)(x2+1)
=(1+k2)x1x2+(+k2)(x1+x2)++k2
=(1+k2)+(+k2)(-)++k2
+k2 (定值).
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

設(shè)A,B分別為橢圓=1(a>b>0)的左、右頂點(diǎn),(1,)為橢圓上一點(diǎn),橢圓長半軸長等于焦距.
(1)求橢圓的方程;
(2)設(shè)P(4,x)(x≠0),若直線AP,BP分別與橢圓相交于異于A,B的點(diǎn)M,N,求證:∠MBN為鈍角.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

若動(dòng)點(diǎn)M到定點(diǎn)F1(0,-1)、F2(0,1)的距離之和為2,則點(diǎn)M的軌跡為(  )
A.橢圓B.直線F1F2
C.線段F1F2D.直線F1F2的垂直平分線

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:填空題

以橢圓的焦點(diǎn)為頂點(diǎn),以該橢圓的頂點(diǎn)為焦點(diǎn)的雙曲線方程是         .

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

(本小題滿分12分)如圖,橢圓上的點(diǎn)M與橢圓右焦點(diǎn)的連線與x軸垂直,且OM(O是坐標(biāo)原點(diǎn))與橢圓長軸和短軸端點(diǎn)的連線AB平行.

(1)求橢圓的離心率;
(2)過且與AB垂直的直線交橢圓于P、Q,若的面積是 ,求此時(shí)橢圓的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

設(shè)拋物線x2=4y與橢圓=1交于點(diǎn)E,F(xiàn),則△OEF(O為坐標(biāo)原點(diǎn))的面積為(  )
A.3B.4C.6D.12

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

橢圓+y2=1的兩個(gè)焦點(diǎn)為F1,F(xiàn)2,過F1作垂直于x軸的直線與橢圓相交,一個(gè)交點(diǎn)為P,則|PF2|=(  )
A.B.C.D.4

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:填空題

若拋物線y2=2px的焦點(diǎn)與橢圓的右焦點(diǎn)重合,則該拋物線的準(zhǔn)線方程為___________.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

已知兩點(diǎn),且的等差中項(xiàng),則動(dòng)點(diǎn)的軌跡方程是(    )
A.B.C.D.

查看答案和解析>>

同步練習(xí)冊答案