【題目】如圖,在直角坐標(biāo)系中,圓與軸負(fù)半軸交于點(diǎn),過點(diǎn)的直線,分別與圓交于,兩點(diǎn).
(Ⅰ)若,,求的面積;
(Ⅱ)若直線過點(diǎn),證明:為定值,并求此定值.
【答案】(I);(II)證明見解析,.
【解析】
試題分析:(I)由題意,得出直線的方程為,直線的方程為,由中位線定理,得,由此可求解的面積;(II)當(dāng)直線斜率存在時,設(shè)直線的方程為,代入圓的方程,利用根與系數(shù)的關(guān)系、韋達(dá)定理,即可化簡得出為定值;當(dāng)斜率不存在時,直線的方程為,代入圓的方程可得:,,即可得到為定值.
試題解析:(Ⅰ)由題知,所以,為圓的直徑,
的方程為,直線的方程為,
所以圓心到直線的距離,
所以,由中位線定理知,,
;
(Ⅱ)設(shè)、,
①當(dāng)直線斜率存在時,設(shè)直線的方程為,代入圓的方程中有:
,整理得:,
則有,,
;
②當(dāng)直線斜率不存在時,直線的方程為,
代入圓的方程可得:,,;
綜合①②可得:為定值,此定值為.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)().
(Ⅰ)當(dāng)時,討論函數(shù)的單調(diào)性;
(Ⅱ)若,恒成立,求實數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖1,在矩形ABCD中, ,點(diǎn)分別在邊上,且, 交于點(diǎn).現(xiàn)將沿折起,使得平面平面,得到圖2.
(Ⅰ)在圖2中,求證: ;
(Ⅱ)若點(diǎn)是線段上的一動點(diǎn),問點(diǎn)在什么位置時,二面角的余弦值為.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)(其中,為常數(shù)且)在處取得極值.
(Ⅰ)當(dāng)時,求的單調(diào)區(qū)間;
(Ⅱ)若在上的最大值為1,求的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在ABC中,內(nèi)角A,B,C的對邊分別為a,b,c,已知
(1)求 的值;
(2)若 ,b=2,求△ABC的面積S.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】過點(diǎn)作直線分別交軸的正半軸于兩點(diǎn).
(Ⅰ)當(dāng)取最小值時,求出最小值及直線的方程;
(Ⅱ)當(dāng)取最小值時,求出最小值及直線的方程;
(Ⅲ)當(dāng)取最小值時,求出最小值及直線的方程.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,以為頂點(diǎn)的六面體中, 和均為等邊三角形,且平面平面, 平面, , .
(1)求證: 平面;
(2)求此六面體的體積.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)f(x)=Asin(ωx+φ)(x∈R,ω>0,0<φ< )的部分圖象如圖所示.
(1)求函數(shù)f(x)的解析式;
(2)求函數(shù)g(x)=f(x﹣ )﹣f(x+ )的單調(diào)遞增區(qū)間.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com