【題目】如圖,在直角坐標(biāo)系中,圓軸負(fù)半軸交于點(diǎn),過點(diǎn)的直線,分別與圓交于,兩點(diǎn).

)若,,求的面積;

)若直線過點(diǎn),證明:為定值,并求此定值.

【答案】(III證明見解析,

【解析】

試題分析:(I)由題意,得出直線的方程為,直線的方程為,由中位線定理,得,由此可求解的面積;(II)當(dāng)直線斜率存在時,設(shè)直線的方程為,代入圓的方程,利用根與系數(shù)的關(guān)系、韋達(dá)定理,即可化簡得出為定值;當(dāng)斜率不存在時,直線的方程為,代入圓的方程可得:,,即可得到為定值.

試題解析:()由題知,所以為圓的直徑,

的方程為,直線的方程為,

所以圓心到直線的距離,

所以,由中位線定理知,,

;

)設(shè)、,

當(dāng)直線斜率存在時,設(shè)直線的方程為,代入圓的方程中有:

,整理得:,

則有,

;

當(dāng)直線斜率不存在時,直線的方程為,

代入圓的方程可得:,;

綜合①②可得:為定值,此定值為

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)).

)當(dāng)討論函數(shù)的單調(diào)性;

)若,恒成立,求實數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖1,在矩形ABCD中, ,點(diǎn)分別在邊上,且, 于點(diǎn).現(xiàn)將沿折起,使得平面平面,得到圖2.

(Ⅰ)在圖2中,求證: ;

(Ⅱ)若點(diǎn)是線段上的一動點(diǎn),問點(diǎn)什么位置時,二面角的余弦值為

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)(其中,為常數(shù)且)在處取得極值.

(Ⅰ)當(dāng)時,求的單調(diào)區(qū)間;

(Ⅱ)若上的最大值為1,求的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在ABC中,內(nèi)角A,B,C的對邊分別為a,b,c,已知
(1)求 的值;
(2)若 ,b=2,求△ABC的面積S.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知,若在區(qū)間上有且只有一個極值點(diǎn),則的取值范圍是( )

A. B. C. D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】過點(diǎn)作直線分別交軸的正半軸于兩點(diǎn).

(Ⅰ)當(dāng)取最小值時,求出最小值及直線的方程;

(Ⅱ)當(dāng)取最小值時,求出最小值及直線的方程;

(Ⅲ)當(dāng)取最小值時,求出最小值及直線的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,以為頂點(diǎn)的六面體中, 均為等邊三角形,且平面平面, 平面, .

(1)求證: 平面;

(2)求此六面體的體積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)f(x)=Asin(ωx+φ)(x∈R,ω>0,0<φ< )的部分圖象如圖所示.

(1)求函數(shù)f(x)的解析式;
(2)求函數(shù)g(x)=f(x﹣ )﹣f(x+ )的單調(diào)遞增區(qū)間.

查看答案和解析>>

同步練習(xí)冊答案