試題分析:因為雙曲線的漸近線為
,要使直線
與雙曲線無交點,則直線
,應(yīng)在兩漸近線之間,所以有
,即
,所以
,
,即
,
,所以
.故選B。
點評:主要是對于雙曲線的幾何性質(zhì)的運(yùn)用,直線于雙曲線的位置關(guān)系的判定,屬于基礎(chǔ)題。
練習(xí)冊系列答案
相關(guān)習(xí)題
科目:高中數(shù)學(xué)
來源:不詳
題型:單選題
在同一平面直角坐標(biāo)系中,經(jīng)過坐標(biāo)伸縮變換
后,曲線
C變?yōu)榍
,則曲線
C的方程為 ( )
查看答案和解析>>
科目:高中數(shù)學(xué)
來源:不詳
題型:填空題
過拋物線
焦點的直線與拋物線交于
兩點,
,且
中點的縱坐標(biāo)為
,則
的值為___
___.
查看答案和解析>>
科目:高中數(shù)學(xué)
來源:不詳
題型:填空題
橢圓
上的點到直線
的距離的最小值為
。
查看答案和解析>>
科目:高中數(shù)學(xué)
來源:不詳
題型:解答題
已知兩定點
,
,動點
滿足
,由點
向
軸作垂線段
,垂足為
,點
滿足
,點
的軌跡為
.
(1)求曲線
的方程;
(2)過點
作直線
與曲線
交于
,
兩點,點
滿足
(
為原點),求四邊形
面積的最大值,并求此時的直線
的方程.
查看答案和解析>>
科目:高中數(shù)學(xué)
來源:不詳
題型:填空題
橢圓
上的任意一點
(除短軸端點除外)與短軸兩個端點
的連線交
軸于點
和
,則
的最小值是
查看答案和解析>>
科目:高中數(shù)學(xué)
來源:不詳
題型:解答題
如圖所示,O為坐標(biāo)原點,過點P(2,0)且斜率為k的直線L交拋物線y
=2x于M(x
,y
),N(x
,y
)兩點. ⑴寫出直線L的方程;⑵求x
x
與y
y
的值;⑶求證:OM⊥ON
查看答案和解析>>
科目:高中數(shù)學(xué)
來源:不詳
題型:單選題
如圖,有一條長度為1的線段EF,其端點E、F分別在邊長為3的正方形ABCD的四邊上滑動,當(dāng)F沿正方形的四邊滑動一周時,EF的中點M所形成的軌跡長度最接近于( )
查看答案和解析>>
科目:高中數(shù)學(xué)
來源:不詳
題型:單選題
在平面直角坐標(biāo)系
中,雙曲線中心在原點,焦點在
軸上,一條漸近線方程為
,
則它的離心率為( )
查看答案和解析>>