【題目】已知函數(shù)f(x)=alnx+ x2﹣(1+a)x.
(1)求函數(shù)f(x)的單調(diào)區(qū)間;
(2)若f(x)≥0對定義域中的任意x恒成立,求實數(shù)a的取值范圍;
(3)證明:對任意正整數(shù)m,n,不等式 + +…+ > 恒成立.
【答案】
(1)解:∵f′(x)= +x﹣(1+a),
①當(dāng)a≤0時,若0<x<1,則f′(x)<0,
故函數(shù)f(x)的單調(diào)減區(qū)間是(0,1);
若x>1,則f′(x)>0,故函數(shù)f(x)的增區(qū)間是(1,+∞).
②當(dāng)0<a<1時,函數(shù)f(x)的單調(diào)減區(qū)間是(a,1);
單調(diào)增區(qū)間是(0,a),(1,+∞).
③當(dāng)a=1時,則f′(x)= ≥0,
故函數(shù)f(x)的單調(diào)增區(qū)間是(0,+∞);
④當(dāng)a>1時,函數(shù)f(x)的單調(diào)遞減區(qū)間是(1,a);
函數(shù)f(x)的單調(diào)遞增區(qū)間是(0,1),(a,+∞).
(2)解:由于f(1)=﹣ ,
當(dāng)a>0時,f(1)<0,
此時f(x)≥0對定義域內(nèi)的任意x不是恒成立的.
當(dāng)a≤0時,由(1)得f(x)在區(qū)間(0,+∞)上的極小值,也是最小值為f(1)=﹣ ,
此時,f(1)≥0,解得a≤﹣ ,
故實數(shù)a的取值范圍是(﹣∞,﹣ ).
(3)解:由(2)知,當(dāng)a=﹣ 時,
f(x)=﹣ lnx+ x2﹣ x≥0,當(dāng)且僅當(dāng)x=1時,等號成立,
這個不等式等價于lnx≤x2﹣x.
當(dāng)x>1時,變換為 > = ﹣ ,
因此不等式左邊>( ﹣ )+( ﹣ )+…+( ﹣ )= ﹣ = ,
從而得證.
【解析】(1)求出f(x)的導(dǎo)數(shù),由此根據(jù)a的取值范圍進行分類討論,能求出函數(shù)f(x)的單調(diào)區(qū)間.(2)由于f(1)=﹣ ,當(dāng)a>0時,f(1)<0,此時f(x)≥0對定義域內(nèi)的任意x不是恒成立的.當(dāng)a≤0時,由(1)得f(x)在區(qū)間(0,+∞)上取得最小值為f(1)=﹣ ,由此能求出實數(shù)a的取值范圍.(3)由(2)知,當(dāng)a=﹣ 時,f(x)≥0,當(dāng)且僅當(dāng)x=1時,等號成立,這個不等式等價于lnx≤x2﹣x.由此能夠證明對任意的正整數(shù)m,n,不等式恒成立.
【考點精析】本題主要考查了利用導(dǎo)數(shù)研究函數(shù)的單調(diào)性和函數(shù)的最大(小)值與導(dǎo)數(shù)的相關(guān)知識點,需要掌握一般的,函數(shù)的單調(diào)性與其導(dǎo)數(shù)的正負有如下關(guān)系: 在某個區(qū)間內(nèi),(1)如果,那么函數(shù)在這個區(qū)間單調(diào)遞增;(2)如果,那么函數(shù)在這個區(qū)間單調(diào)遞減;求函數(shù)在上的最大值與最小值的步驟:(1)求函數(shù)在內(nèi)的極值;(2)將函數(shù)的各極值與端點處的函數(shù)值,比較,其中最大的是一個最大值,最小的是最小值才能正確解答此題.
科目:高中數(shù)學(xué) 來源: 題型:
【題目】選修4-5:不等式選講
已知函數(shù)f(x)=|x+2|﹣2|x﹣1|.
(Ⅰ)求不等式f(x)≥﹣2的解集M;
(Ⅱ)對任意x∈[a,+∞],都有f(x)≤x﹣a成立,求實數(shù)a的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知四數(shù)a1 , a2 , a3 , a4依次成等比數(shù)列,且公比q不為1.將此數(shù)列刪去一個數(shù)后得到的數(shù)列(按原來的順序)是等差數(shù)列,則正數(shù)q的取值集合是 .
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】解答題
(1)解不等式:|2x﹣1|﹣|x|<1;
(2)設(shè)f(x)=x2﹣x+1,實數(shù)a滿足|x﹣a|<1,求證:|f(x)﹣f(a)|<2(|a+1|)
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知數(shù)列{an}滿足[2﹣(﹣1)n]an+[2+(﹣1)n]an+1=1+(﹣1)n×3n,則a25﹣a1= .
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知{an}是各項均為正數(shù)的等比數(shù)列(公比q>1),bn=log2an , b1+b2+b3=3,b1b2b3=﹣3,則an=( )
A.
B.
C.
D. 或
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,在三棱柱ABC﹣A1B1C1中,四邊形ACC1A1和BCC1B1均為正方形,且所在平面互相垂直.
(Ⅰ)求證:BC1⊥AB1;
(Ⅱ)求直線BC1與平面AB1C1所成角的大。
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)f(x)=ex﹣ax有極值1,這里e是自然對數(shù)的底數(shù).
(1)求實數(shù)a的值,并確定1是極大值還是極小值;
(2)若當(dāng)x∈[0,+∞)時,f(x)≥mxln(x+1)+1恒成立,求實數(shù)m的取值范圍.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com