設(shè)全集為R,函數(shù)f(x)=
4-x2
的定義域?yàn)镸,函數(shù)f(x)=ln(x2-4x)的定義域?yàn)镹,則M∩N=( 。
A、[-2,0)
B、(-∞,-2]
C、(4,+∞)
D、(-∞,0]∪(4,+∞)
考點(diǎn):交集及其運(yùn)算
專題:集合
分析:由偶次根號下被開方數(shù)大于等于零、對數(shù)的真數(shù)大于零,分別求出函數(shù)的定義域M、N,再由交集的運(yùn)算求出
M∩N.
解答: 解:由4-x2≥0得,-2≤x≤2,
則函數(shù)f(x)=
4-x2
的定義域?yàn)镸=[-2,2],
由x2-4x>0得,x>4或x<0,
則函數(shù)f(x)=ln(x2-4x)的定義域?yàn)镹=(-∞,0)∪(4,+∞),
所以M∩N=[-2,0),
故選:A.
點(diǎn)評:本題考查交集及其運(yùn)算,以及函數(shù)的定義域的求法,屬于基礎(chǔ)題.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

在△ABC中,∠A、∠B、∠C的對邊分別為a、b、c,cosC=
3
10

(1)若
CB
CA
=
9
2
,求c的最小值;
(2)設(shè)向量
x
=(2sinB,-
3
),
y
=(cos2B,1-2sin2
B
2
),且
x
y
,求∠B的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知數(shù)列{an}的前n項(xiàng)和Sn滿足(t-1)Sn=t(an-2),(t為常數(shù),t≠0且t≠1).
(Ⅰ)求數(shù)列{an}的通項(xiàng)公式;
(Ⅱ)設(shè)bn=Sn-1,且數(shù)列{bn}為等比數(shù)列.
①求t的值;
②若cn=(-an)•log3(-bn),求數(shù)列{cn}的前n和Tn

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

a
=(1,3),
b
=(-1,1),則
a
b
=( 。
A、2B、1C、0D、-2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

在△ABC中,已知sinAcosB=sinC,那么△ABC一定是(  )
A、直角三角形
B、等腰三角形
C、等腰直角三角形
D、正三角形

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)a,b,c分別是函數(shù)f(x)=2x-log
1
2
x,g(x)=(
1
2
)x-log2
x,h(x)=(
1
2
)x-log
1
2
x的零點(diǎn),則a,b,c的大小關(guān)系是( 。
A、a<c<b
B、a<b<c
C、b<a<c
D、c<b<a

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=x3+ax2+bx+c在x=-2處取得極值,并且它的圖象與直線y=-3x+3在點(diǎn)(1,0)處相切.
(1)求f(x)的解析式;
(2)求f(x)的單調(diào)區(qū)間;
(3)若關(guān)于x的方程f(x)=m有三個(gè)不同的是根,求m的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如圖,已知E、F分別是矩形ABCD的邊BC、CD的中點(diǎn),EF與AC交于點(diǎn)G,若
AB
=
a
,
AD
=
b
,用
a
,
b
表示
AG

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知在數(shù)列{an}中,a1=3,點(diǎn)(an,an+1)在直線y=x+2上,若數(shù)列{bn}滿足bn=an•3n,記Tn是數(shù)列{bn}的前n項(xiàng)的和,那么Tn=
 

查看答案和解析>>

同步練習(xí)冊答案