【題目】已知函數(shù),( )是偶函數(shù).
(1)求的值;
(2)設(shè)函數(shù),其中.若函數(shù)與的圖象有且只有一個(gè)交點(diǎn),求的取值范圍.
【答案】(1) (2)
【解析】試題分析:(1)由偶函數(shù)得,根據(jù)對(duì)數(shù)運(yùn)算法則化簡(jiǎn)得的值;(2)化簡(jiǎn)方程得關(guān)于一元二次方程,先討論時(shí),是否滿足條件,再根據(jù)實(shí)根分布討論的取值范圍.本題也可利用參變分離法,轉(zhuǎn)化為討論函數(shù)交點(diǎn)個(gè)數(shù).
試題解析:解:(1)∵()是偶函數(shù),
∴對(duì)任意,恒成立
即: 恒成立,∴
(2)由于,所以定義域?yàn)?/span>,也就是滿足
∵函數(shù)與的圖象有且只有一個(gè)交點(diǎn),
∴方程在上只有一解
即:方程在上只有一解
令,則,因而等價(jià)于關(guān)于的方程(*)在上只有一解
當(dāng)時(shí),解得,不合題意;
當(dāng)時(shí),記,其圖象的對(duì)稱軸
∴函數(shù)在上遞減,而
∴方程(*)在無(wú)解
當(dāng)時(shí),記,其圖象的對(duì)稱軸
所以,只需,即,此恒成立
∴此時(shí)的范圍為
綜上所述,所求的取值范圍為
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】從6名男生和4名女生中任選4人參加比賽,設(shè)被選中女生的人數(shù)為隨機(jī)變量ξ,求:
(Ⅰ)ξ的分布列;
(Ⅱ)所選女生不少于2人的概率.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】某家庭進(jìn)行理財(cái)投資,根據(jù)長(zhǎng)期收益率市場(chǎng)預(yù)測(cè),投資類產(chǎn)品的收益與投資額成正比,投資類產(chǎn)品的收益與投資額的算術(shù)平方根成正比.已知投資1萬(wàn)元時(shí)兩類產(chǎn)品的收益分別為0.125萬(wàn)元和0.5萬(wàn)元.
(1)分別寫出兩類產(chǎn)品的收益與投資額的函數(shù)關(guān)系;
(2)該家庭有20萬(wàn)元資金,全部用于理財(cái)投資,問:怎么分配資金能使投資獲得最大收益,其最大收益是多少萬(wàn)元?
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù)f(x)=x2﹣2ax+5(a>1).
(1)若f(x)的定義域和值域均是[1,a],求實(shí)數(shù)a的值;
(2)若f(x)在區(qū)間(﹣∞,2]上是減函數(shù),且對(duì)任意的x∈[1,a+1],總有f(x)≤0,求實(shí)數(shù)a的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】為了緩解交通壓力,某省在兩個(gè)城市之間特修一條專用鐵路,用一列火車作為公共交通車.已知每日來(lái)回趟數(shù)y是每次拖掛車廂節(jié)數(shù)x的一次函數(shù),如果該列火車每次拖4節(jié)車廂,每日能來(lái)回16趟;如果每次拖6節(jié)車廂,則每日能來(lái)回10趟,火車每日每次拖掛車廂的節(jié)數(shù)是相同的,每節(jié)車廂滿載時(shí)能載客110人.
(1)求出y關(guān)于x的函數(shù);
(2)該火車滿載時(shí)每次拖掛多少節(jié)車廂才能使每日營(yíng)運(yùn)人數(shù)最多?并求出每天最多的營(yíng)運(yùn)人數(shù)?
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù),給出下列結(jié)論:
(1)若對(duì)任意,且,都有,則為R上的減函數(shù);
(2)若為R上的偶函數(shù),且在內(nèi)是減函數(shù), (-2)=0,則>0解集為(-2,2);
(3)若為R上的奇函數(shù),則也是R上的奇函數(shù);
(4)t為常數(shù),若對(duì)任意的,都有則關(guān)于對(duì)稱。
其中所有正確的結(jié)論序號(hào)為_________
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,多面體PABCD的直觀圖及三視圖如圖所示,E、F分別為PC、BD的中點(diǎn).
(I)求證:EF∥平面PAD;
(II)求證:平面PDC⊥平面PAD.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知正項(xiàng)數(shù)列{an}的首項(xiàng)a1=1,且(n+1)a +anan+1﹣na =0對(duì)n∈N*都成立.
(1)求{an}的通項(xiàng)公式;
(2)記bn=a2n﹣1a2n+1 , 數(shù)列{bn}的前n項(xiàng)和為Tn , 證明:Tn< .
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com