設(shè)A,B分別為橢圓(a>0,b>0)的左、右頂點(diǎn),橢圓長半軸的長等于焦距,且x=為它的右準(zhǔn)線.
(1)求橢圓的方程;
(2)設(shè)P為橢圓上不同于A,的一個動點(diǎn),直線PA,P與橢圓右準(zhǔn)線相交于M,兩點(diǎn),證明:MN為直徑的圓必過橢圓外的一個定點(diǎn).
【答案】分析:(1)根據(jù)題意:“橢圓長半軸的長等于焦距,且x=4為它的右準(zhǔn)線”可求得a和c的關(guān)系,進(jìn)而根據(jù)準(zhǔn)線方程求得a和c,則b可得,進(jìn)而求得橢圓的方程.
(2)根據(jù)(1)中的橢圓方程可求得A,B的坐標(biāo),利用參數(shù)設(shè)出點(diǎn)P的坐標(biāo),由A、P、M三點(diǎn)共線或B、P、N三點(diǎn)共線可以求得點(diǎn)M,N的坐標(biāo),進(jìn)而表示出 以MN為直徑的圓的方程,從而得出以MN為直徑的圓必過橢圓外的一個定點(diǎn).
解答:解:(1)由題意,知a=2c,=4,解得a=2,c=1,∴b=,故橢圓方程為 …(5分)
(2)設(shè)P(2cosθ,sinθ),M(4,m),N(4,n),則A(-2,0),B(2,0),
由A、P、M三點(diǎn)共線,得m=     …(7分)
由B、P、N三點(diǎn)共線,得n=,…(9分)
以MN為直徑的圓的方程為(x-4)(x-4)+(y-)(y-)=0,
整理得:(x-4)2+y2-(+)y-9=0      …(12分)
(舍去)或
∴MN為直徑的圓必過橢圓外的一個定點(diǎn)(7,0),命題成立.…(13分)
【由對稱性先猜出在x軸上存在符合要求的定點(diǎn),再求出該點(diǎn),結(jié)果正確的,給(13分).】
點(diǎn)評:本小題主要考查直線、圓和橢圓等平面解析幾何的基礎(chǔ)知識,考查綜合運(yùn)用數(shù)學(xué)知識進(jìn)行推理運(yùn)算的能力和解決問題的能力.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)A,B分別為橢圓
x2
a2
+
y2
b2
=1(a>b>0)
的左、右頂點(diǎn),C,D分別為橢圓上、下頂點(diǎn),橢圓長半軸的長等于焦距,且四邊形ACBD 的面積為4
3

(1)求橢圓的方程;
(2)設(shè)Q為橢圓上異于A、B的點(diǎn),求證:直線QA與直線QB的斜率之積為定值;
(3)設(shè)P為直線x=
a2
c
 .(a2=b2+c2)
上不同于點(diǎn)(
a2
c
,0)的任意一點(diǎn),若直線AP,BP分別與橢圓相交于異于A,B的點(diǎn)M、N,證明:點(diǎn)B在以MN為直徑的圓內(nèi).

查看答案和解析>>

同步練習(xí)冊答案
闂傚倸鍊搁崐鎼佸磹閻戣姤鍤勯柤鍝ユ暩娴犳艾鈹戞幊閸婃鎱ㄧ€靛憡宕叉慨妞诲亾闁绘侗鍠涚粻娑樷槈濞嗘劖顏熼梻浣芥硶閸o箓骞忛敓锟� 闂傚倸鍊搁崐鎼佸磹閹间礁纾归柟闂寸绾惧綊鏌熼梻瀵割槮缁炬崘顕ч埞鎴︽偐閸欏鎮欑紓浣哄閸ㄥ爼寮婚妸鈺傚亞闁稿本绋戦锟�