【題目】已知向量 =(cosα,sinα), =(cosβ,sinβ),0<β<α<π.
(1)若| |= ,求證: ;
(2)設(shè)c=(0,1),若 + =c,求α,β的值.

【答案】
(1)解:證明:由| |= ,即( 2= 2﹣2 + 2=2,

又因為 2= 2=| |2=| |2=1.

所以2﹣2 =2,即 =0,

;


(2)解:因為 + =(cosα+cosβ,sinα+sinβ)=(0,1),

所以

,

兩邊分別平方再相加得1=2﹣2sinβ,

∴sinβ= ,sinα=

又∵0<β<α<π,

∴α= ,β=


【解析】(1)由向量的平方即為模的平方,化簡整理,結(jié)合向量垂直的條件,即可得證;(2)先求出 + 的坐標(biāo),根據(jù)條件即可得到 ,兩邊分別平方并相加便可得到sinβ= ,進而得到sinα= ,根據(jù)條件0<β<α<π即可得出α,β.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】PM2.5是指大氣中直徑小于或等于2.5微米的顆粒物,也稱為可入肺顆粒物,我國PM2.5標(biāo)準(zhǔn)采用世衛(wèi)組織設(shè)定的最寬限值,即PM2.5日均值在35微克/立方米以下空氣質(zhì)量為一級;在35微克/立方米~75微克/立方米之間空氣質(zhì)量為二級;在75微克/立方米以上空氣質(zhì)量為超標(biāo).某市環(huán)保局從市區(qū)2017年上半年每天的PM2.5監(jiān)測數(shù)據(jù)中隨機抽取15天的數(shù)據(jù)作為樣本,監(jiān)測值如莖葉圖所示(十位為莖,個位為葉)

(1)從這15天的數(shù)據(jù)中任取一天,求這天空氣質(zhì)量達(dá)到一級的概率;

(2)從這15天的數(shù)據(jù)中任取3天的數(shù)據(jù),記表示其中空氣質(zhì)量達(dá)到一級的天數(shù),求的分布列;

(3)以這15天的PM2.5的日均值來估計一年的空氣質(zhì)量情況,(一年按360天來計算),則一年中大約有多少天的空氣質(zhì)量達(dá)到一級.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】一個圓形體育館,自正東方向起,按逆時針方向等分為十六個扇形區(qū)域,順次記為一區(qū),二區(qū),…,十六區(qū),我們設(shè)圓形體育場第一排與體育館中心的距離為200m,每相鄰兩排的間距為1m,每層看臺的高度為0、7m,現(xiàn)在需要確定第九區(qū)第四排正中的位置 A ,請建立適當(dāng)?shù)淖鴺?biāo)系,把點 A 的坐標(biāo)求出來

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在直角坐標(biāo)系xOy中,圓C的參數(shù)方程 ( 為參數(shù)).以O(shè)為極點,x軸的非負(fù)半軸為極軸建立極坐標(biāo)系.
(1)求圓C的極坐標(biāo)方程;
(2)直線 l 的極坐標(biāo)方程是 ,射線OM: 與圓C的交點為O、P,與直線 l 的交點為Q,求線段PQ的長.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)f(x)的值滿足f(x)<0,對任意實數(shù)x,y都有f(xy)=f(x)f(y),且f(﹣1)=1,f(27)=9,當(dāng)0<x<1時,f(x)∈(0,1).
(1)求f(1)的值,判斷f(x)的奇偶性并證明;
(2)判斷f(x)在(0,+∞)上的單調(diào)性,并給出證明;
(3)若a≥0且f(a+1)≤ ,求a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】(選修4-4 坐標(biāo)系與參數(shù)方程) 以平面直角坐標(biāo)系的原點為極點, 軸的正半軸為極軸建立極坐標(biāo)系,設(shè)曲線C的參數(shù)方程為 (是參數(shù)),直線的極坐標(biāo)方程為.

1)求直線的直角坐標(biāo)方程和曲線C的普通方程;

2)設(shè)點P為曲線C上任意一點,求點P到直線的距離的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè)a>0, 是R上的函數(shù),且滿足f(﹣x)=f(x),x∈R.
(1)求a的值;
(2)證明f(x)在(0,+∞)上是增函數(shù).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)

在區(qū)間上的極小值和極大值點。

上的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,一條河的兩岸平行,河的寬度d=600m,一艘客船從碼頭A出發(fā)勻速駛往河對岸的碼頭B.已知|AB|=1km,水流速度為2km/h, 若客船行駛完航程所用最短時間為6分鐘,則客船在靜水中的速度大小為( )

A.8km/h
B.km/h
C.km/h
D.10km/h

查看答案和解析>>

同步練習(xí)冊答案