如圖,已知在四棱錐P-ABCD中,底面ABCD是邊長為4的正方形,△PAD是正三角形,平面PAD⊥平面ABCD,E、F、G分別是PA、PB、BC的中點.

(Ⅰ)求證:EF⊥平面PAD;

(Ⅱ)求平面EFG與平面ABCD所成銳二面角的大;

(Ⅲ)若M為線段AB上靠近A的一個動點,問當AM長度等于多少時,直線MF與平面EFG所成角的正弦值等于?

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:

如圖,如圖,已知在四棱錐P-ABCD中,底面ABCD是矩形,PA⊥平面ABCD,E、F分別是AB、PD的中點.
(Ⅰ)求證:AF∥平面PEC;
(Ⅱ)若PD與平面ABCD所成角為60°,且AD=2,AB=4,求點A到平面PED的距離.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

如圖,已知在四棱錐P-ABCD中,底面ABCD是矩形,PA⊥平面ABCD,PA=AD=1,AB=2,E、F分別是AB、PD的中點.
(1)求證:AF∥平面PEC;
(2)設CD的中點為H,求證:平面EFH∥平面PBC;
(3)求AC與平面PCD所成的角的正弦值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

如圖,已知在四棱錐P-ABCD中,底面ABCD是菱形,PA⊥底面ABCD,AB=1,PA•AC=1,∠ABC=θ(0<θ<
π2
),則四棱錐P-ABCD的體積V的取值范圍是( 。

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

(2012•貴州模擬)如圖,已知在四棱錐P-ABCD中,底面ABCD是矩形,PA⊥平面ABCD,PA=AD=1,AB=2,F(xiàn)是PD的中點,E是線段AB上的點.
(Ⅰ)當E是AB的中點時,求證:AF∥平面PEC;
(Ⅱ)要使二面角P-EC-D的大小為45°,試確定E點的位置.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

如圖,已知在四棱錐P-ABCD中,底面ABCD是邊長為4的正方形,△PAD是正三角形,平面PAD⊥平面ABCD,E,F(xiàn),G分別是PD,PC,BC的中點.
(1)求證:平面EFG⊥平面PAD;
(2)若M是線段CD上一點,求三棱錐M-EFG的體積.

查看答案和解析>>

同步練習冊答案