【題目】已知函數(shù),,其中

(Ⅰ)若函數(shù)在區(qū)間(1,e)存在零點(diǎn),求實(shí)數(shù)a的取值范圍; 

(Ⅱ)若對任意的,都有成立,求實(shí)數(shù)的取值范圍.

【答案】(Ⅰ)(Ⅱ)

【解析】

(Ⅰ),求導(dǎo)可得的單調(diào)性,結(jié)合零點(diǎn)存在性定理即可求解。

(Ⅱ)任意的,都有成立,等價(jià)于對任意的

.分別求出即可求解。

(Ⅰ)解:,其定義域?yàn)?/span>

0,在區(qū)間(0)上單調(diào)遞減.

要使函數(shù)在區(qū)間(1,e)內(nèi)存在零點(diǎn),當(dāng)且僅當(dāng)

所以實(shí)數(shù)a的取值范圍為(0,).   

(Ⅱ)解:對任意的都有成立等價(jià)于對任意的

當(dāng) 1,]時(shí),函數(shù)上是增函數(shù).

,

∴當(dāng)時(shí),0,當(dāng)時(shí),0

在(0,a)上單調(diào)遞減,在(a)單調(diào)遞增.

當(dāng)時(shí),函數(shù)在[1,]上是增函數(shù),

,得,又, ,不合題意.

當(dāng)1≤時(shí),函數(shù)上是減函數(shù),在上是增函數(shù).

,得,又1≤

當(dāng),函數(shù)上是減函數(shù)..

,得,又,

綜上所述,的取值范圍為

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】我國是世界上嚴(yán)重缺水的國家,某市政府為了鼓勵居民節(jié)約用水,計(jì)劃調(diào)整居民生活用水收費(fèi)方案,擬確定一個合理的月用水量標(biāo)準(zhǔn)(噸)、一位居民的月用水量不超過的部分按平價(jià)收費(fèi),超出的部分按議價(jià)收費(fèi).為了了解居民用水情況,通過抽樣,獲得了某年100位居民每人的月均用水量(單位:噸),將數(shù)據(jù)按照[0,0.5),[0.5,1),[4,4.5]分成9組,制成了如圖所示的頻率分布直方圖.

)求直方圖中a的值;

)設(shè)該市有30萬居民,估計(jì)全市居民中月均用水量不低于3噸的人數(shù),并說明理由;

)若該市政府希望使85%的居民每月的用水量不超過標(biāo)準(zhǔn)(噸),估計(jì)的值,并說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù) R.

1證明:當(dāng)時(shí),函數(shù)是減函數(shù);

2根據(jù)的不同取值,討論函數(shù)的奇偶性,并說明理由;

3當(dāng),且時(shí),證明:對任意,存在唯一的R,使得,.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知橢圓的兩個焦點(diǎn)分別為 ,過點(diǎn)的直線與橢圓相交于兩點(diǎn),且,。

1求橢圓的離心率;

2設(shè)點(diǎn)C與點(diǎn)A關(guān)于坐標(biāo)原點(diǎn)對稱,直線上有一點(diǎn) 的外接圓上,求的值

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】(多選)某中學(xué)高一年級有20個班,每班50人;高二年級有30個班,每班45.甲就讀于高一,乙就讀于高二.學(xué)校計(jì)劃從這兩個年級中共抽取235人進(jìn)行視力調(diào)查,下列說法中正確的有(

A.應(yīng)該采用分層隨機(jī)抽樣法

B.高一、高二年級應(yīng)分別抽取100人和135

C.乙被抽到的可能性比甲大

D.該問題中的總體是高一、高二年級的全體學(xué)生的視力

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】《九章算術(shù)》是我國古代內(nèi)容極為豐富的數(shù)學(xué)名著,書中有一個“引葭赴岸”問題:“今有池方一丈,葭生其中央.出水一尺,引葭赴岸,適與岸齊.問水深、葭長各幾何?”其意思為“今有水池1丈見方(即尺),蘆葦生長在水的中央,長出水面的部分為1.將蘆葦向池岸牽引,恰巧與水岸齊接(如圖所示).試問水深、蘆葦?shù)拈L度各是多少?假設(shè),現(xiàn)有下述四個結(jié)論:

①水深為12尺;②蘆葦長為15尺;③;④.

其中所有正確結(jié)論的編號是(

A.①③B.①③④C.①④D.②③④

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,在三棱柱中,平面平面,,

分別為棱的中點(diǎn).

(1)求證: ;

(2)求平面與平面所成的銳二面角的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】2016年1月1日,我國全面實(shí)行二孩政策,某機(jī)構(gòu)進(jìn)行了街頭調(diào)查,在所有參與調(diào)查的青年男女中,持“響應(yīng)”“猶豫”和“不響應(yīng)”態(tài)度的人數(shù)如下表所示:

響應(yīng)

猶豫

不響應(yīng)

男性青年

500

300

200

女性青年

300

200

300

根據(jù)已知條件完成下面的列聯(lián)表,并判斷能否有的把握認(rèn)為猶豫與否與性別有關(guān)?請說明理由.

猶豫

不猶豫

總計(jì)

男性青年

女性青年

總計(jì)

1800

參考公式:

參考數(shù)據(jù):

0.150

0.100

0.050

0.025

0.010

2.072

2.706

3.841

5.024

6.635

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】選修4 — 4:坐標(biāo)系與參數(shù)方程

在直角坐標(biāo)系中,直線的參數(shù)方程為為參數(shù)),以原點(diǎn)為極點(diǎn), 軸的正半軸為極軸建立極坐標(biāo)系,曲線的極坐標(biāo)方程為).

1)分別寫出直線的普通方程與曲線的直角坐標(biāo)方程;

2)已知點(diǎn),直線與曲線相交于兩點(diǎn),若,求的值.

查看答案和解析>>

同步練習(xí)冊答案