(2013•南充一模)函數(shù)f(x)=loga|x|+1(a>1)的圖象大致為下圖的( 。
分析:先畫y=logax,然后將y=logax的圖象關(guān)于y軸對稱,然后向左平移1個單位得y=loga|x|+1,(a>1)的大致圖象.
解答:解:先畫y=logax,
然后將y=logax的圖象關(guān)于y軸對稱得y=loga|x|,
再保留y=logax的圖象,將兩個函數(shù)的圖象向上平移1個單位,
即得到函數(shù)y-loga|x|+1(a>1)的大致圖象.
故選C.
點評:本題考查對數(shù)函數(shù)的圖象和性質(zhì),解題時要注意圖象的變換.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

(2013•南充一模)函數(shù)y=loga(|x|+1)(a>1)的圖象大致是( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2013•南充一模)執(zhí)行如圖所示的程序框圖,則輸出的S的值是( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2013•南充一模)某投資商到一開發(fā)區(qū)投資72萬元建起一座蔬菜加工廠,第一年共支出12萬元,以后每年支出增加4萬元,從第一年起每年蔬菜銷售收入50萬元.設(shè)f(n)表示前n年的純利潤總和(f(n)=前n年的總收入-前n年的總支出-投資額).
(1)該廠從第幾年開始盈利?
(2)若干年后,投資商為開發(fā)新項目,對該廠有兩種處理方法:①年平均純利潤達到最大時,以48萬元出售該廠;②純利潤總和達到最大時,以16萬元出售該廠,問哪種方案更合算?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2013•南充一模)對于三次函數(shù)f(x)=ax3+bx2+cx+d,定義y=f″(x)是函數(shù)y=f′(x)的導(dǎo)函數(shù).若方程f″(x)=0有實數(shù)解x0,則稱點(x0,f(x0))為函數(shù)y=f(x)的“拐點”.有同學(xué)發(fā)現(xiàn):任何一個三次函數(shù)既有拐點,又有對稱中心,且拐點就是對稱中心.根據(jù)這一發(fā)現(xiàn),對于函數(shù)g(x)=
1
3
x3-
1
2
x2+3x+
1
12
+
1
x-
1
2
,則g(
1
2013
)+
g(
2
2013
)+
g(
3
2013
)+
…+g(
2012
2013
)
的值為
3018
3018

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2013•南充一模)已知全集U=R,集合A={x|0<2x<1},B={x|log3x>0},則A∩(?UB)=(  )

查看答案和解析>>

同步練習(xí)冊答案