【題目】在平面直角坐標(biāo)系中,已知橢圓),圓),若圓的一條切線與橢圓相交于兩點(diǎn).

(1)當(dāng), 時(shí),若點(diǎn)都在坐標(biāo)軸的正半軸上,求橢圓的方程;

(2)若以為直徑的圓經(jīng)過坐標(biāo)原點(diǎn),探究之間的等量關(guān)系,并說明理由.

【答案】(1)橢圓的方程是;(2)滿足等量關(guān)系

【解析】試題分析:

(1)首先利用直線到圓心的距離等于半徑求得 的值,然后結(jié)合幾何關(guān)系求得 的值即可求得橢圓的標(biāo)準(zhǔn)方程.

(2)將原問題轉(zhuǎn)化為,聯(lián)立直線與橢圓的標(biāo)準(zhǔn)方程,結(jié)合根與系數(shù)的關(guān)系整理計(jì)算即可求得 之間的等量關(guān)系.

試題解析:

解:(1)∵直線相切,∴.

,解得.

∵點(diǎn)都在坐標(biāo)軸正半軸上,

.

∴切線與坐標(biāo)軸的交點(diǎn)為, .

, .

∴橢圓的方程是.

(2)設(shè),

∵以為直徑的圓經(jīng)過點(diǎn),

,即.

∵點(diǎn)在直線上,

.

(*)

消去,得.

顯然

∴由一元二次方程根與系數(shù)的關(guān)系,得

代入(*)式,得.

整理,得.

又由(1),有.

消去,得

滿足等量關(guān)系.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】選修4-4:坐標(biāo)系與參數(shù)方程

在直角坐標(biāo)系中,以坐標(biāo)原點(diǎn)為極點(diǎn), 軸的非負(fù)半軸為極軸建立極坐標(biāo)系,圓的極坐標(biāo)方程為.

(1)求出圓的直角坐標(biāo)方程;

(2)已知圓軸相交于 兩點(diǎn),直線 關(guān)于點(diǎn)對稱的直線為.若直線上存在點(diǎn)使得,求實(shí)數(shù)的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)的圖象如圖所示,則的取值范圍是( )

A. B. C. D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)為自然對數(shù)的底數(shù)).

(1)若, ,求函數(shù)的單調(diào)區(qū)間;

(2)若,且方程內(nèi)有解,求實(shí)數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在平面直角坐標(biāo)系中,已知橢圓),圓),若圓的一條切線與橢圓相交于兩點(diǎn).

(1)當(dāng), 時(shí),若點(diǎn)都在坐標(biāo)軸的正半軸上,求橢圓的方程;

(2)若以為直徑的圓經(jīng)過坐標(biāo)原點(diǎn),探究是否滿足,并說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù).若時(shí)方程有兩 個不同的實(shí)根,則實(shí)數(shù)的取值范圍是________;若的值域?yàn)?/span>,則實(shí)數(shù)

取值范圍是________.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】(2015·廣東卷)若直線l1l2是異面直線,l1在平面α內(nèi),l2在平面β內(nèi),l是平面α與平面β的交線,則下列命題正確的是(  )

A. ll1,l2都不相交

B. ll1,l2都相交

C. l至多與l1,l2中的一條相交

D. l至少與l1l2中的一條相交

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】下列命題正確的是__________.(寫出所有正確命題的序號)

①已知,“”是“”的充要條件;

②已知平面向量,“”是“”的必要不充分條件;

③已知,“”是“”的充分不必要條件;

④命題:“,使”的否定為:“,都有

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù).

(1)過原點(diǎn)作函數(shù)圖象的切線,求切點(diǎn)的橫坐標(biāo);

(2)對,不等式恒成立,求實(shí)數(shù)的取值范圍.

查看答案和解析>>

同步練習(xí)冊答案