【題目】如圖,在直四棱柱中,已知,.
(1)求證:;
(2)設(shè)是上一點(diǎn),試確定的位置,使平面,并說明理由.
【答案】⑴連DC1,正方形DD1C1C中,D1C⊥C1D
∵AD⊥平面DD1C1C ∴AD⊥CD1又AD∩CD1=D
∴CD1⊥平面DA C1
⑵ E 為AC中點(diǎn)時(shí),平面9’
梯形ABCD中,DE∥且=" AB " ∴AD∥且=BE
∵AD∥且= A1D1∴A1D1∥且="BE " ∴A1D1EB是平行四邊形
∴D1E∥B A1又B A1平面DB A1D1E平面DB A1
∴平面
【解析】試題分析:
(1)本題為證線與線垂直,常規(guī)思路為轉(zhuǎn)化為證線與另一條
直線所在的平面垂直。結(jié)合條件,可證出平面,則得:.
(2)本題為通過確定點(diǎn)的位置來證明證線與面平行,可通過題中的條件進(jìn)行大膽設(shè)想,(為中點(diǎn)),然后進(jìn)行對(duì)應(yīng)的證明,可解決;
試題解析:
(1)在直四棱柱中,
連結(jié),,四邊形是正方形..
又,,
平面,平面,
.平面,且,
平面,又平面,.
(2)連結(jié),連結(jié),設(shè),
,連結(jié),平面平面,
要使平面,須使,
又是的中點(diǎn).是的中點(diǎn).
又易知,.
即是的中點(diǎn).綜上所述,當(dāng)是的中點(diǎn)時(shí),可使平面.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在一個(gè)6×6的表格中放3顆完全相同的白棋和3顆完全相同的黑棋,若這6顆棋子不在同一行也不在同一列上,則不同的放法有( )
A.14400種
B.518400種
C.720種
D.20種
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】下面給出一個(gè)用循環(huán)語句編寫的程序:
k=1
sum=0
WHILE k<10
sum=sum+k∧2
k=k+1
WEND
PRINT sum
END
(1)指出程序所用的是何種循環(huán)語句,并指出該程序的算法功能;
(2)請(qǐng)用另一種循環(huán)語句的形式把該程序?qū)懗鰜?/span>.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某學(xué)校為了了解該校學(xué)生對(duì)于某項(xiàng)運(yùn)動(dòng)的愛好是否與性別有關(guān),通過隨機(jī)抽查110名學(xué)生,得到如下2×2的列聯(lián)表:
喜歡該項(xiàng)運(yùn)動(dòng) | 不喜歡該項(xiàng)運(yùn)動(dòng) | 總計(jì) | |
男 | 40 | 20 | 60 |
女 | 20 | 30 | 50 |
總計(jì) | 60 | 50 | 110 |
由公式K2= ,算得K2≈7.61
附表:
p(K2≥k0) | 0.025 | 0.01 | 0.005 |
k0 | 5.024 | 6.635 | 7.879 |
參照附表,以下結(jié)論正確是( )
A.有99.5%以上的把握認(rèn)為“愛好該項(xiàng)運(yùn)動(dòng)與性別有關(guān)”
B.有99.5%以上的把握認(rèn)為“愛好該項(xiàng)運(yùn)動(dòng)與性別無關(guān)”
C.有99%以上的把握認(rèn)為“愛好該項(xiàng)運(yùn)動(dòng)與性別有關(guān)”
D.有99%以上的把握認(rèn)為“愛好該項(xiàng)運(yùn)動(dòng)與性別無關(guān)”
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)是異面直線,則以下四個(gè)命題:①存在分別經(jīng)過直線和的兩個(gè)互相垂直的平面;②存在分別經(jīng)過直線和的兩個(gè)平行平面;③經(jīng)過直線有且只有一個(gè)平面垂直于直線;④經(jīng)過直線有且只有一個(gè)平面平行于直線,其中正確的個(gè)數(shù)有( )
A. B. C. D.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知.
(1)若是奇函數(shù),求的值,并判斷的單調(diào)性(不用證明);
(2)若函數(shù)在區(qū)間(0,1)上有兩個(gè)不同的零點(diǎn),求的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)f(x)=2sin(ωx+φ)(ω>0,|φ|< )的圖象過點(diǎn)B(0,﹣1),且在( , )上單調(diào),同時(shí)f(x)的圖象向左平移π個(gè)單位之后與原來的圖象重合,當(dāng)x1 , x2∈(﹣ ,﹣ ),且x1≠x2時(shí),f(x1)=f(x2),則f(x1+x2)=( )
A.﹣
B.﹣1
C.1
D.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】<中華人民共和國(guó)個(gè)人所得稅法>規(guī)定,公民全月工資、薪金所得不超過3500元的部分不必納稅,超過3500元的部分為全月應(yīng)納稅所得額,此項(xiàng)稅款按下表分段累計(jì)計(jì)算:
(1)若某人一月份應(yīng)繳納此項(xiàng)稅款為280元,那么他當(dāng)月的工資、薪金所得是多少?
(2)假設(shè)某人一個(gè)月的工資、薪金所得是元(0<10000),試將其當(dāng)月應(yīng)繳納此項(xiàng)稅款元表示成關(guān)于的函數(shù).
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某校從6名學(xué)生會(huì)干部(其中男生4人,女生2人)中選3人參加青年聯(lián)合會(huì)志愿者。
(1)設(shè)所選3人中女生人數(shù)為 ,求 的分布列及數(shù)學(xué)期望;
(2)在男生甲被選中的情況下,求女生乙也被選中的概率。
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com