【題目】若直線ax+by—4=0和圓x2+y2=4沒有公共點(diǎn),則過點(diǎn)(a,b)的直線與橢圓+=1的公共點(diǎn)個(gè)數(shù)為( )
A. 0 B. 1 C. 2 D. 由a,b的取值來確定
【答案】C
【解析】
根據(jù)直線ax+by+4=0和圓x2+y2=4沒有公共點(diǎn),可推斷點(diǎn)(a,b)是以原點(diǎn)為圓心,2為半徑的圓內(nèi)的點(diǎn),根據(jù)圓的方程和橢圓方程可知圓x2+y2=4內(nèi)切于橢圓,進(jìn)而可知點(diǎn)P是橢圓內(nèi)的點(diǎn),進(jìn)而判斷可得答案.
因?yàn)橹本ax+by+4=0和圓x2+y2=4沒有公共點(diǎn),
所以原點(diǎn)到直線ax+by+4=0的距離d=>2,
所以a2+b2<4,
所以點(diǎn)P(a,b)是在以原點(diǎn)為圓心,2為半徑的圓內(nèi)的點(diǎn).
∵橢圓的長(zhǎng)半軸 3,短半軸為 2
∴圓x2+y2=4內(nèi)切于橢圓
∴點(diǎn)P是橢圓內(nèi)的點(diǎn)
∴過點(diǎn)P(a,b)的一條直線與橢圓的公共點(diǎn)數(shù)為2.
故選:C.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知曲線C1:y2=2x與C2:y=x2在第一象限內(nèi)的交點(diǎn)為P.
(1)求過點(diǎn)P且與曲線C2相切的直線方程;
(2)求兩條曲線所圍圖形(如圖所示的陰影部分)的面積S.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】若將函數(shù)y=2sin(3x+φ)的圖象向右平移 個(gè)單位后得到的圖象關(guān)于點(diǎn)( ,0)對(duì)稱,則|φ|的最小值是( )
A.
B.
C.
D.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,以等腰直角三角形ABC的斜邊BC上的高AD為折痕,把△ABD和△ACD折成互相垂直的兩個(gè)平面后,某學(xué)生得出下列四個(gè)結(jié)論:
①BD⊥AC; ②△BAC是等邊三角形;
③三棱錐D-ABC是正三棱錐; ④平面ADC⊥平面ABC。
其中正確的是___________
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,在三棱柱中,點(diǎn)P,G分別是,的中點(diǎn),已知⊥平面ABC,==3,==2.
(I)求異面直線與AB所成角的余弦值;
(II)求證:⊥平面;
(III)求直線與平面所成角的正弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)f(x)=ln(1+x)﹣ (a>0)
(1)若x=1是函數(shù)f(x)的一個(gè)極值點(diǎn),求a的值;
(2)若f(x)≥0在[0,+∞)上恒成立,求a的取值范圍;
(3)證明: (e為自然對(duì)數(shù)的底數(shù)).
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知命題:實(shí)數(shù)滿足,:實(shí)數(shù)滿足
(1)若為真命題,求實(shí)數(shù)的取值范圍.
(2)若是的充分不必要條件,求實(shí)數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】(本小題滿分12分)
如圖,在四棱錐P—ABCD中,底面ABCD是矩形,PA⊥平面ABCD,AP=AB,BP=BC=2,E,F分別是PB,PC的中點(diǎn).
(Ⅰ)證明:EF∥平面PAD;
(Ⅱ)求三棱錐E—ABC的體積V.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)p:實(shí)數(shù)x滿足x2-2(a+1)x+2a+a2<0,q:實(shí)數(shù)x滿足
(1)若a=1,且p∧q為真,求實(shí)數(shù)x的取值范圍;
(2)若p是q的必要不充分條件,求實(shí)數(shù)a的取值范圍.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com