【題目】下面選項(xiàng)中錯(cuò)誤的有(

A.命題,則的否命題為:,則

B.的充分不必要條件

C.命題,使得的否定是,均有

D.命題,則的逆否命題為真命題

【答案】ABC

【解析】

根據(jù)原命題與它的否命題的關(guān)系判斷;

根據(jù)充分與必要條件的定義判斷

根據(jù)特稱量詞命題的否定是全稱命題判斷;

根據(jù)互為逆否命題的兩個(gè)命題同真假可判斷

解:對(duì)于,命題,則的否命題為:,則

錯(cuò)誤;

對(duì)于,由是得不到,即不充分條件,

可知,即必要條件,故必要不充分條件,錯(cuò)誤;

對(duì)于,命題“,使得”的否定是“,使得”, 錯(cuò)誤;

對(duì)于,命題,則為真命題,根據(jù)互為逆否命題的兩個(gè)命題同真假,可知,命題,則的逆否命題為真命題,正確;

故選:

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知?jiǎng)訄AM經(jīng)過點(diǎn)F1,0),且與直線lx=﹣1相切,動(dòng)圓圓心M的軌跡記為曲線C

1)求曲線C的軌跡方程

2)若點(diǎn)Py軸左側(cè)(不含y軸)一點(diǎn),曲線C上存在不同的兩點(diǎn)AB,滿足PA,PB的中點(diǎn)都在曲線C上,設(shè)AB中點(diǎn)為E,證明:PE垂直于y軸.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】(2018·湖南師大附中摸底)已知直線l經(jīng)過點(diǎn)P(-4,-3),且被圓(x+1)2+(y+2)2=25截得的弦長為8,則直線l的方程是________

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知點(diǎn),點(diǎn)P是圓C:上的任意一點(diǎn),線段PQ的垂直平分線與直線CP交于點(diǎn)M.

求點(diǎn)M的軌跡方程;

過點(diǎn)作直線與點(diǎn)M的軌跡交于點(diǎn)E,過點(diǎn)作直線與點(diǎn)M的軌跡交于點(diǎn)F不重合,且直線AE和直線BF的斜率互為相反數(shù),直線EF的斜率是否為定值,若為定值,求出直線EF的斜率;若不是定值,請(qǐng)說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖所示,在四邊形ABCD中,ACCDAB=1, ,sin∠BCD.

(1)求BC邊的長;

(2)求四邊形ABCD的面積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】(題文)如圖,長方形材料中,已知.點(diǎn)為材料內(nèi)部一點(diǎn),,,且,. 現(xiàn)要在長方形材料中裁剪出四邊形材料,滿足,點(diǎn)、分別在邊上.

(1)設(shè),試將四邊形材料的面積表示為的函數(shù),并指明的取值范圍;

(2)試確定點(diǎn)上的位置,使得四邊形材料的面積最小,并求出其最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知橢圓E:,直線l不過原點(diǎn)O且不平行于坐標(biāo)軸,l與E有兩個(gè)交點(diǎn)A,B,線段AB的中點(diǎn)為M.

,點(diǎn)K在橢圓E上,、分別為橢圓的兩個(gè)焦點(diǎn),求的范圍;

證明:直線OM的斜率與l的斜率的乘積為定值;

若l過點(diǎn),射線OM與橢圓E交于點(diǎn)P,四邊形OAPB能否為平行四邊形?若能,求此時(shí)直線l斜率;若不能,說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某鄉(xiāng)鎮(zhèn)政府為了解決農(nóng)村教師的住房問題,計(jì)劃征用一塊土地蓋一幢建筑總面積為10000公寓樓(每層的建筑面積相同).已知士地的征用費(fèi)為,土地的征用面積為第一層的倍,經(jīng)工程技術(shù)人員核算,第一層建筑費(fèi)用為,以后每增高一層,其建筑費(fèi)用就增加,設(shè)這幢公寓樓高層數(shù)為n,總費(fèi)用為萬元.(總費(fèi)用為建筑費(fèi)用和征地費(fèi)用之和)

1)若總費(fèi)用不超過835萬元,求這幢公寓樓最高有多少層數(shù)?

2)試設(shè)計(jì)這幢公寓的樓層數(shù),使總費(fèi)用最少,并求出最少費(fèi)用.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù),.

(1)若在區(qū)間上不是單調(diào)函數(shù),求實(shí)數(shù)的范圍;

(2)若對(duì)任意,都有恒成立,求實(shí)數(shù)的取值范圍;

(3)當(dāng)時(shí),設(shè),對(duì)任意給定的正實(shí)數(shù),曲線上是否存在兩點(diǎn),,使得是以為坐標(biāo)原點(diǎn))為直角頂點(diǎn)的直角三角形,而且此三角形斜邊中點(diǎn)在軸上?請(qǐng)說明理由.

查看答案和解析>>

同步練習(xí)冊(cè)答案