【題目】在長方體中,,過,三點的平面截去長方體的一個角后,得到如圖所示的幾何體,這個幾何體的體積為

(1)求棱的長;

(2)求經(jīng)過,,四點的球的表面積和體積.

【答案】(1)4;(2).

【解析】

(1)根據(jù)體積關(guān)系列式可求出AA1=4;
(2)經(jīng)過A1,C1,B,D四點的球就是長方體ABCD-A1B1C1D1的外接球,這個球的直徑就是長方體的體對角線,g根據(jù)長方體對角線長定理可得球的半徑R.

(1)設(shè)AA1=x,依題意可得 ,解得x=4,
故棱AA1的長為4,
(2)依題意可知,經(jīng)過A1,C1,B,D四點的球就是
長方體ABCD-A1B1C1D1的外接球,這個球的直徑就是長方體的體對角線,
∴球的直徑 ,
所以所求球的表面積為4πR2=24π,體積為

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】電動摩托車的續(xù)航里程,是指電動摩托車在蓄電池滿電量的情況下一次能行駛的最大距離.為了解A,B兩個不同型號電動摩托車的續(xù)航里程,現(xiàn)從某賣場庫存電動摩托車中隨機抽取AB兩個型號的電動摩托車各5臺,在相同條件下進行測試,統(tǒng)計結(jié)果如下:

電動摩托車編號

1

2

3

4

5

A型續(xù)航里程(km

120

125

122

124

124

B型續(xù)航里程(km

118

123

127

120

a

已知A,B兩個型號被測試電動摩托車?yán)m(xù)航里程的平均值相等.

1)求a的值;

2)求A型號被測試電動摩托車?yán)m(xù)航里程標(biāo)準(zhǔn)差的大小;

3)從被測試的電動摩托車中隨機抽取AB型號電動摩托車各1臺,求至少有1臺的續(xù)航里程超過122km的概率.

(注:n個數(shù)據(jù),的方差,其中為數(shù)據(jù)的平均數(shù))

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】三棱柱中,平面平面,,點為棱的中點,點為線段上的動點.

1)求證:;

2)若直線與平面所成角為,求二面角的正切值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某校要從甲、乙兩名同學(xué)中選擇一人參加該市組織的數(shù)學(xué)競賽,已知甲、乙兩名同學(xué)最近7次模擬競賽的數(shù)學(xué)成績(滿分100分)如下:

:79,81,83,8485,90,93;

乙:75,78,82,84,90,92,94.

1)完成答題卡中的莖葉圖;

2)分別計算甲、乙兩名同學(xué)最近7次模擬競賽成績的平均數(shù)與方差,并由此判斷該校應(yīng)選擇哪位同學(xué)參加該市組織的數(shù)學(xué)競賽.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知10件不同產(chǎn)品中有3件是次品,現(xiàn)對它們一一取出(不放回)進行檢測,直至取出所有次品為止.

(1)若恰在第5次取到第一件次品,第10次才取到最后一件次品,則這樣的不同測試方法數(shù)有多少?

(2)若恰在第6次取到最后一件次品,則這樣的不同測試方法數(shù)是多少?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知雙曲線的右頂點到其一條漸近線的距離等于,拋物線的焦點與雙曲線的右焦點重合,則拋物線上的動點到直線距離之和的最小值為( )

A. 1 B. 2 C. 3 D. 4

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】網(wǎng)絡(luò)看病就是國內(nèi)或者國外的單個人、多個人或者單位通過國際互聯(lián)網(wǎng)或者其他局域網(wǎng)對自我、他人或者某種生物的生理疾病或者機器故障進行查找詢問、診斷治療、檢查修復(fù)的一種新興的看病方式.因此,實地看病與網(wǎng)絡(luò)看病便成為現(xiàn)在人們的兩種看病方式,最近某信息機構(gòu)調(diào)研了患者對網(wǎng)絡(luò)看病,實地看病的滿意程度,在每種看病方式的患者中各隨機抽取15名,將他們分成兩組,每組15人,分別對網(wǎng)絡(luò)看病,實地看病兩種方式進行滿意度測評,根據(jù)患者的評分(滿分100分)繪制了如圖所示的莖葉圖:

1)根據(jù)莖葉圖判斷患者對于網(wǎng)絡(luò)看病、實地看病那種方式的滿意度更高?并說明理由;

2)若將大于等于80分視為“滿意”,根據(jù)莖葉圖填寫下面的列聯(lián)表:

滿意

不滿意

總計

網(wǎng)絡(luò)看病

實地看病

總計

并根據(jù)列聯(lián)表判斷能否有的把握認(rèn)為患者看病滿意度與看病方式有關(guān)?

3)從網(wǎng)絡(luò)看病的評價“滿意”的人中隨機抽取2人,求這2人平分都低于90分的概率.

,其中.

0.15

0.10

0.05

0.025

0.010

0.005

0.001

2.072

2.706

3.841

5.024

6.635

7.879

10.828

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某公司的甲、乙兩名工程師因為工作需要,各自選購一臺筆記本電腦.該公司提供了三款筆記本電腦作為備選,這三款筆記本電腦在某電商平臺的銷量和用戶評分如下表所示:

型號

銷量(臺)

2000

2000

4000

用戶評分

8

6.5

9.5

若甲選購某款筆記本電腦的概率與對應(yīng)的銷量成正比,乙選購某款筆記本電腦的概率與對應(yīng)的用戶評分減去5的值成正比,且他們兩人選購筆記本電腦互不影響.

(1)求甲、乙兩人選購不同款筆記本電腦的概率;

(2)若公司給購買這三款筆記本電腦的員工一定的補貼,補貼標(biāo)準(zhǔn)如下表:

型號

補貼(千元)

3

4

5

記甲、乙兩人獲得的公司補貼之和為千元,求的分布列和數(shù)學(xué)期望.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,在四棱錐中,底面是邊長為的菱形,,且平面平面.

1)證明:

2)求二面角的余弦值.

查看答案和解析>>

同步練習(xí)冊答案