(理)已知數(shù)列{an},對(duì)于任意的正整數(shù)n,an=
1  (1≤n≤2009)
-2•(
1
3
)n-2009 (n≥2010)
,設(shè)Sn表示數(shù)列{an}的前n項(xiàng)和.下列關(guān)于
lim
n→+∞
Sn
的結(jié)論,正確的是( 。
A.
lim
n→+∞
Sn=-1
B.
lim
n→+∞
Sn=2008
C.
lim
n→+∞
Sn=
2009,(1≤n≤2009)
-1.(n≥2010)
(n∈N*)
D.以上結(jié)論都不對(duì)
an=
1  (1≤n≤2009)
-2•(
1
3
)n-2009 (n≥2010)

∴a1=a2=a3=…=a2009=1,
a2010=-
2
3

a2011=-
2
9
,
a2012=-
2
27
,

Sn=1× 2009+
-
2
3
[1- (
1
3
)
n-2009
 ]
1-
1
3

=2008+(
1
3
)
n-2009
,
lim
n→+∞
Sn
=
lim
n→∞
[2008+(
1
3
)
n-2009
]

=2008.
故選B.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(理)已知數(shù)列{an}滿足a1=1,an=
12
an-1+1(n≥2),
(1)求證:數(shù)列{an-2}是等比數(shù)列,并求通項(xiàng)an
(2)求{an}前n項(xiàng)和Sn

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(理)已知數(shù)列{an},Sn是其前n項(xiàng)和,Sn=1-an(n∈N*),
(1)求數(shù)列{an}的通項(xiàng)公式;
(2)令數(shù)列{bn}的前n項(xiàng)和為T(mén)n,bn=(n+1)an,求Tn
(3)設(shè)cn=
3an
(2-an)(1-an)
,數(shù)列{cn}的前n項(xiàng)和Rn,且Rnλ+
m
λ
(λ>0,m>0)
恒成立,求m的范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(理)已知數(shù)列{an}是等差數(shù)列,且a1=-2,a1+a2+a3=-12.
(1)求數(shù)列{an}的通項(xiàng)公式;
(2)若b1=0,bn+1=7bn+6,n∈N*,求數(shù)列{an(bn+1)}的前n項(xiàng)和Tn的公式.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(理)已知數(shù)列{an}滿足a1=2,前n項(xiàng)和為Sn,an+1=
pan+n-1(n為奇數(shù))
-an-2n(n為偶數(shù))

(1)若數(shù)列{bn}滿足bn=a2n+a2n+1(n≥1),試求數(shù)列{bn}前3項(xiàng)的和T3;
(2)若數(shù)列{cn}滿足cn=a2n,試判斷{cn}是否為等比數(shù)列,并說(shuō)明理由;
(3)當(dāng)p=
1
2
時(shí),對(duì)任意n∈N*,不等式S2n+1≤log
1
2
(x2+3x)
都成立,求x的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(理)已知數(shù)列{an}前n項(xiàng)和Sn=-ban+1-
1
(1+b)n
其中b是與n無(wú)關(guān)的常數(shù),且0<b<1,若
limSn
n→∞
存在,則
limSn=
n→∞
1
1

查看答案和解析>>

同步練習(xí)冊(cè)答案