【題目】如圖,在三棱錐P-ABC中,底面ABC,,H為PC的中點(diǎn),M為AH的中點(diǎn),.
(1)求PM與平面AHB成角的正弦值;
(2)在線段PB上是否存在點(diǎn)N,使得平面ABC.若存在,請(qǐng)說(shuō)明點(diǎn)N的位置,若不存在,請(qǐng)說(shuō)明理由.
【答案】(1) (2)存在,N靠近點(diǎn)B的四等分點(diǎn)
【解析】
(1)在平面ABC中,過(guò)點(diǎn)A作,以A為原點(diǎn),建立空間直角坐標(biāo)系,先求平面的法向量,再根據(jù)公式求解;
(2)利用,表示點(diǎn)的坐標(biāo),再利用,求點(diǎn)的坐標(biāo).
(1)解:在平面ABC中,過(guò)點(diǎn)A作,
因?yàn)?/span>平面PAC,所以平面PAC,
由底面ABC,得PA,AC,AD兩兩垂直,
所以以A為原點(diǎn),AD,AC,AP所在直線分別為x軸,y軸,z軸如圖建立空間直角坐標(biāo)系,
則,
設(shè)平面AHB的法向量為,
因?yàn)?/span>,.
由,得,
令,得.
設(shè)PM與平面AHB成角,因?yàn)?/span>,
所以
即.
(2)解:因?yàn)?/span>,設(shè),
所以,又因?yàn)?/span>,
所以.
因?yàn)?/span>平面ABC,平面ABC的法向量,
所以,解得.
即點(diǎn)N是靠近點(diǎn)B的四等分點(diǎn).
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù)在處取得極小值.
(1)求實(shí)數(shù)的值;
(2)若函數(shù)存在極大值與極小值,且函數(shù)有兩個(gè)零點(diǎn),求實(shí)數(shù)的取值范圍.(參考數(shù)據(jù):,)
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù),若存在,使得關(guān)于的方程有三個(gè)不等實(shí)根,則實(shí)數(shù)的取值范圍為( )
A.B.
C.D.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】在△ABC中,內(nèi)角A,B,C所對(duì)的邊分別為a,b,c.已知a=2,c=3,又知bsinA=acos(B).
(Ⅰ)求角B的大小、b邊的長(zhǎng):
(Ⅱ)求sin(2A﹣B)的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知橢圓:的離心率,是橢圓上的動(dòng)點(diǎn),且點(diǎn)到橢圓焦點(diǎn)的距離的最小值為1.
(1)求橢圓的方程;
(2)過(guò)橢圓的右焦點(diǎn)的直線交橢圓于,兩點(diǎn),當(dāng)時(shí),求面積的最大值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】某水果種植基地引進(jìn)一種新水果品種,經(jīng)研究發(fā)現(xiàn)該水果每株的產(chǎn)量(單位:)和與它“相近”的株數(shù)具有線性相關(guān)關(guān)系(兩株作物“相近”是指它們的直線距離不超過(guò)),并分別記錄了相近株數(shù)為0,1,2,3,4時(shí)每株產(chǎn)量的相關(guān)數(shù)據(jù)如下:
0 | 1 | 2 | 3 | 4 | |
15 | 12 | 11 | 9 | 8 |
(1)求出該種水果每株的產(chǎn)量關(guān)于它“相近”株數(shù)的回歸方程;
(2)有一種植戶準(zhǔn)備種植該種水果500株,且每株與它“相近”的株數(shù)都為,計(jì)劃收獲后能全部售出,價(jià)格為10元,如果收入(收入=產(chǎn)量×價(jià)格)不低于25000元,則的最大值是多少?
(3)該種植基地在如圖所示的直角梯形地塊的每個(gè)交叉點(diǎn)(直線的交點(diǎn))處都種了一株該種水果,其中每個(gè)小正方形的邊長(zhǎng)和直角三角形的直角邊長(zhǎng)都為,已知該梯形地塊周邊無(wú)其他樹(shù)木影響,若從所種的該水果中隨機(jī)選取一株,試根據(jù)(1)中的回歸方程,預(yù)測(cè)它的產(chǎn)量的分布列與數(shù)學(xué)期望.
附:回歸方程中斜率和截距的最小二乘法估計(jì)公式分別為:,.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,幾何體中,,均為邊長(zhǎng)為2的正三角形,且平面平面,四邊形為正方形.
(1)若平面平面,求證:平面平面;
(2)若二面角為,求直線與平面所成角的正弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】在平面直角坐標(biāo)系中,已知拋物線C:()的焦點(diǎn)F在直線上,平行于x軸的兩條直線,分別交拋物線C于A,B兩點(diǎn),交該拋物線的準(zhǔn)線于D,E兩點(diǎn).
(1)求拋物線C的方程;
(2)若F在線段上,P是的中點(diǎn),證明:.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】某地隨著經(jīng)濟(jì)的發(fā)展,居民收入逐年增長(zhǎng),下表是該地一建設(shè)銀行連續(xù)五年的儲(chǔ)蓄存款(年底余額),如下表1:
年份x | 2011 | 2012 | 2013 | 2014 | 2015 |
儲(chǔ)蓄存款y(千億元) | 5 | 6 | 7 | 8 | 10 |
為了研究計(jì)算的方便,工作人員將上表的數(shù)據(jù)進(jìn)行了處理, 得到下表2:
時(shí)間代號(hào)t | 1 | 2 | 3 | 4 | 5 |
z | 0 | 1 | 2 | 3 | 5 |
(Ⅰ)求z關(guān)于t的線性回歸方程;
(Ⅱ)通過(guò)(Ⅰ)中的方程,求出y關(guān)于x的回歸方程;
(Ⅲ)用所求回歸方程預(yù)測(cè)到2020年年底,該地儲(chǔ)蓄存款額可達(dá)多少?
(附:對(duì)于線性回歸方程,其中)
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com