在平面直角坐標系中,如圖,已知橢圓E:的左、右頂點分別為,上、下頂點分別為、.設直線的傾斜角的正弦值為,圓與以線段為直徑的圓關于直線對稱.

(1)求橢圓E的離心率;
(2)判斷直線與圓的位置關系,并說明理由;
(3)若圓的面積為,求圓的方程.

(1),(2)相切,(3).

解析試題分析:(1)求橢圓E的離心率,只需列出關于的一個等量關系就可解出. 因為直線的傾斜角的正弦值為,所以,即,(2)判斷直線與圓的位置關系,通常利用圓心到直線距離與半徑大小比較. 因為直線的傾斜角的正弦值為,所以直線的斜率為于是的方程為:,因此中點到直線距離為所以直線與圓相切,又圓與以線段為直徑的圓關于直線對稱,直線與圓相切.(3)由圓的面積為知圓半徑為1,所以關于直線的對稱點為,則解得.所以,圓的方程為
【解】(1)設橢圓E的焦距為2c(c>0),
因為直線的傾斜角的正弦值為,所以,
于是,即,所以橢圓E的離心率  
(2)由可設,,則
于是的方程為:,
的中點的距離,         又以為直徑的圓的半徑,即有
所以直線與圓相切.                            
(3)由圓的面積為知圓半徑為1,從而,         
的中點關于直線的對稱點為,
                              
解得.所以,圓的方程為
考點:橢圓離心率,直線與圓位置關系,點關于直線對稱點

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:解答題

已知圓C經(jīng)過P(4,-2),Q(-1,3)兩點,且在y軸上截得的線段長為4,半徑小于5.
(1)求直線PQ與圓C的方程;
(2)若直線l∥PQ,且l與圓C交于點A,B,且以線段AB為直徑的圓經(jīng)過坐標原點,求直線l的方程.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

已知圓心為C的圓經(jīng)過點,且圓心C在直線上,求圓心為C的圓的標準方程.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

已知曲線C上的動點P()滿足到定點A(-1,0)的距離與到定點B(1,0)距離之比為
(1)求曲線C的方程。
(2)過點M(1,2)的直線與曲線C交于兩點M、N,若|MN|=4,求直線的方程。

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

已知是橢圓上兩點,點M的坐標為.
(1)當兩點關于軸對稱,且為等邊三角形時,求的長;
(2)當兩點不關于軸對稱時,證明:不可能為等邊三角形.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

以直角坐標系的原點為極點O,軸正半軸為極軸,已知點P的直角坐標為(1,-5),點C的極坐標為,若直線l經(jīng)過點P,且傾斜角為,圓C的半徑為4.
(1).求直線l的參數(shù)方程及圓C的極坐標方程;
(2).試判斷直線l與圓C有位置關系.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

已知圓C:x2+(y-3)2=4,一動直線l過A(-1,0)與圓C相交于P、Q兩點,

M是PQ中點,l與直線m:x+3y+6=0相交于N.
(1)求證:當l與m垂直時,l必過圓心C;
(2)當PQ=2時,求直線l的方程;
(3)探索·是否與直線l的傾斜角有關?若無關,請求出其值;若有關,請說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

在平面直角坐標系xOy中,已知圓x2y2-12x+32=0的圓心為Q,過點P(0,2)且斜率為k的直線l與圓Q相交于不同的兩點AB.
(1)求圓Q的面積;
(2)求k的取值范圍;
(3)是否存在常數(shù)k,使得向量共線?如果存在,求k的值;如果不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

以點(2,)為圓心且與直線相切的圓的方程是        

查看答案和解析>>

同步練習冊答案