設(shè)∈(0,),則二次曲線xcos-ytan=1的離心率的取值范圍為(      )
A.(0,B.(C.(,D.(,+∞)
D
∈(0,),∴sin∈(0,)!郺=tan,b=cot。
∴c=a+b= tan+cot ∴e ===,∴e=,∴e,+∞)。
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

以坐標(biāo)軸為對稱軸的等軸雙曲線的一條準(zhǔn)線方程為y=,則雙曲線方程為_____________.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

如圖所示,過雙曲線x2-=1的右焦點(diǎn)作直線與雙曲線交于A、B兩點(diǎn),若OA⊥OB(O為坐標(biāo)原點(diǎn)),求AB所在直線的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

已知橢圓D:=1與圓M:x+(y-m)=9(m∈R),雙曲線G與橢圓D有相同的焦點(diǎn),它的兩條漸近線恰好與圓M相切。當(dāng)m=5時(shí),求雙曲線G的方程。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

雙曲線的左焦點(diǎn)為,頂點(diǎn)為,是該雙曲線右支上任意一點(diǎn),則分別以線段為直徑的兩圓一定(    )
A.相交B.內(nèi)切C.外切D.相離

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

由雙曲線=1上的一點(diǎn)P與左、右兩焦點(diǎn)F1、F2構(gòu)成△PF1F2,求△PF1F2的內(nèi)切圓與邊F1F2的切點(diǎn)坐標(biāo).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

函數(shù)y=的圖象是平面上到兩定點(diǎn)距離之差的絕對值等于定長的點(diǎn)的軌跡,則這兩個(gè)定點(diǎn)間的距離為
A.8B.4
C.4D.2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

設(shè)雙曲線的兩條準(zhǔn)線把兩焦點(diǎn)間的線段三等分,則此雙曲線的離心率為(    )
A.B.C.D.2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

M為雙曲線上異于頂點(diǎn)的任一點(diǎn),雙曲線的焦點(diǎn)為,設(shè),求的值.

查看答案和解析>>

同步練習(xí)冊答案