【題目】某化工廠生產(chǎn)甲、乙兩種肥料,生產(chǎn)1車皮甲種肥料能獲得利潤(rùn)10000元,需要的主要原料是磷酸鹽4噸,硝酸鹽8噸;生產(chǎn)1車皮乙種肥料能獲得利潤(rùn)5000元,需要的主要原料是磷酸鹽1噸,硝酸鹽15噸.現(xiàn)庫存有磷酸鹽10噸,硝酸鹽66噸,在此基礎(chǔ)上生產(chǎn)這兩種肥料.問分別生產(chǎn)甲、乙兩種肥料各多少車皮,能夠產(chǎn)生最大的利潤(rùn)?

【答案】生產(chǎn)甲種、乙種肥料各2車皮,能夠產(chǎn)生最大利潤(rùn),最大利潤(rùn)為3萬元.

【解析】

設(shè)生產(chǎn)甲種肥料x車皮、乙種肥料y車皮能夠產(chǎn)生利潤(rùn)z萬元,列出線性約束條件,再利用線性規(guī)劃求解.

設(shè)生產(chǎn)甲種肥料x車皮、乙種肥料y車皮能夠產(chǎn)生利潤(rùn)z萬元.

目標(biāo)函數(shù)為zx+0.5y,

約束條件為:

可行域如圖中陰影部分的整點(diǎn).

當(dāng)直線y=-2x+2z經(jīng)過可行域上的點(diǎn)M時(shí),截距2z最大,即z最大.

解方程組得:M點(diǎn)坐標(biāo)為(2,2).

所以zmaxx+0.5y=3.

所以生產(chǎn)甲種、乙種肥料各2車皮,能夠產(chǎn)生最大利潤(rùn),最大利潤(rùn)為3萬元.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】按下列程序框圖來計(jì)算:
如果輸入的x=5,應(yīng)該運(yùn)算( )次才停止.
A.2
B.3
C.4
D.5

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)f(x)=(x﹣b)lnx+x2在區(qū)間[1,e]上單調(diào)遞增,則實(shí)數(shù)b的取值范圍是(
A.(﹣∞,﹣3]
B.(﹣∞,2e]
C.(﹣∞,3]
D.(﹣∞,2e2+2e]

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】心理學(xué)家分析發(fā)現(xiàn)視覺和空間能力與性別有關(guān),某數(shù)學(xué)興趣小組為了驗(yàn)證這個(gè)結(jié)論,從興趣小組中按分層抽樣的方法抽取50名同學(xué)(男30女20),給所有同學(xué)幾何題和代數(shù)題各一題,讓各位同學(xué)自由選擇一道題進(jìn)行解答.選題情況如下表:(單位:人)

)能否據(jù)此判斷有97.5%的把握認(rèn)為視覺和空間能力與性別有關(guān)?

)經(jīng)過多次測(cè)試后,甲每次解答一道幾何題所用的時(shí)間在57分鐘,乙每次解答一道幾何題所用的時(shí)間在68分鐘,現(xiàn)甲、乙各解同一道幾何題,求乙比甲先解答完的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某高職院校進(jìn)行自主招生文化素質(zhì)考試,考試內(nèi)容為語文、數(shù)學(xué)、英語三科,總分為200分.現(xiàn)從上線的考生中隨機(jī)抽取20人,將其成績(jī)用莖葉圖記錄如下:

td style="width:16.2pt; padding:3.75pt 5.4pt; vertical-align:middle">

15

6

5

4

16

3

5

8

8

2

17

2

3

6

8

8

8

6

5

18

5

7

19

2

3

(Ⅰ)計(jì)算上線考生中抽取的男生成績(jī)的方差;(結(jié)果精確到小數(shù)點(diǎn)后一位)

(Ⅱ)從上述莖葉圖180分以上的考生中任選2人作為考生代表出席座談會(huì),求所選考生恰為一男一女的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】拋物線C1yx2(p>0)的焦點(diǎn)與雙曲線C2y21的右焦點(diǎn)的連線交C1于第一象限的點(diǎn)M.C1在點(diǎn)M處的切線平行于C2的一條漸近線,則p( )

A. B. C. D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知橢圓 過點(diǎn) ,且與 的交于 ,

(1) 表示 , 的橫坐標(biāo);

(2)設(shè)以 為焦點(diǎn),過點(diǎn) 且開口向左的拋物線的頂點(diǎn)坐標(biāo)為 ,求實(shí)數(shù)

的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)f(x)= ﹣alnx,其中a>0,x>0,e是自然對(duì)數(shù)的底數(shù). (Ⅰ)討論f(x)的單調(diào)性;
(Ⅱ)設(shè)函數(shù)g(x)= ,證明:0<g(x)<1.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù).

(1)若,證明:;

(2)若只有一個(gè)極值點(diǎn),求的取值范圍,并證明:.

查看答案和解析>>

同步練習(xí)冊(cè)答案