分析 (1)由已知條件條件出EF∥平面BCGH,A1E∥平面BCHG,由此能證明平面平面EFA1∥平面BCHG;
(2)BG與CH必相交,設交點為P,證明P∈直線AA1,即可證明BG、CH、AA1三線共點.
解答 證明:(1)∵E,F(xiàn)分別為AB,AC的中點,∴EF∥BC,
∵EF?平面BCHG,BC?平面BCHG,
∴EF∥平面BCHG.
∵A1G與EB平行且相等,
∴四邊形A1EBG是平行四邊形,
∴A1E∥GB,
∵A1E?平面BCHG,GB?平面BCHG,
∴A1E∥平面BCHG.
∵A1E∩EF=E,∴平面EFA1∥平面BCHG.
(2)∵GH∥BC,GH<BC,
∴BG與CH必相交,
設交點為P,
則由P∈BG,BG?平面BAA1B1,得P∈平面BAA1B1,
同理P∈平面CAA1C1,
又平面BAA1B1∩平面CAA1C1=AA1,
∴P∈直線AA1,∴BG、CH、AA1三線共點.
點評 本題考查平面與平面平行的證明,考查直線位置關(guān)系,是中檔題,
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | 1 | B. | $\frac{4}{5}$ | C. | -1 | D. | $-\frac{3}{5}$ |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | 不平行的兩條棱所在的直線所成的角是60o或90o | |
B. | 四邊形AECF是正方形 | |
C. | 點A到平面BCE的距離為$\frac{\sqrt{6}}{3}$ | |
D. | 該八面體的頂點不會在同一個球面上. |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | (1,3] | B. | [3,+∞) | C. | (1,2] | D. | [2,+∞) |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | (-4,3) | B. | (-4,3] | C. | (3,4] | D. | (3,4) |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | $\frac{1}{2}$ | B. | $\frac{8}{15}$ | C. | $\frac{16}{31}$ | D. | $\frac{16}{29}$ |
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com