14.如圖,在三棱柱ABC-A1B1C1中,E,F(xiàn),G,H分別是AB,AC,A1B1,A1C1的中點,求證:
(1)平面EFA1∥平面BCHG;
(2)BG、CH、AA1三線共點.

分析 (1)由已知條件條件出EF∥平面BCGH,A1E∥平面BCHG,由此能證明平面平面EFA1∥平面BCHG;
(2)BG與CH必相交,設交點為P,證明P∈直線AA1,即可證明BG、CH、AA1三線共點.

解答 證明:(1)∵E,F(xiàn)分別為AB,AC的中點,∴EF∥BC,
∵EF?平面BCHG,BC?平面BCHG,
∴EF∥平面BCHG.
∵A1G與EB平行且相等,
∴四邊形A1EBG是平行四邊形,
∴A1E∥GB,
∵A1E?平面BCHG,GB?平面BCHG,
∴A1E∥平面BCHG.
∵A1E∩EF=E,∴平面EFA1∥平面BCHG.
(2)∵GH∥BC,GH<BC,
∴BG與CH必相交,
設交點為P,
則由P∈BG,BG?平面BAA1B1,得P∈平面BAA1B1,
同理P∈平面CAA1C1
又平面BAA1B1∩平面CAA1C1=AA1,
∴P∈直線AA1,∴BG、CH、AA1三線共點.

點評 本題考查平面與平面平行的證明,考查直線位置關(guān)系,是中檔題,

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:解答題

4.已知雙曲線C1:$\left\{\begin{array}{l}x=3cosα\\ y=2sinα\end{array}$(α為參數(shù)),再以原點O為極點,x軸的正半軸為極軸建立極坐標系,曲線C的極坐標方程為2ρsinθ+ρcosθ=10.
(1)求曲線C1的普通方程和曲線C的直角坐標方程;
(2)若點M在曲線C1上運動,試求出M到曲線C的距離的最小值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

5.定義在R上的函數(shù)f(x)滿足f(-x)+f(x)=0,f(x+2)=-f(x),且x∈(-2,0)時,f(x)=2x+$\frac{1}{5}$,則f(log220)=( 。
A.1B.$\frac{4}{5}$C.-1D.$-\frac{3}{5}$

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

2.已知ax≤xlnx-x+1對任意x∈[$\frac{1}{2}$,2],恒成立,則a的最大值為( 。
A.0B.1C.2D.3

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

9.已知函數(shù)f(x)=ln(1+x)-x+$\frac{1}{2}$kx2
(1)當k=2時,求曲線f(x)在點(1,f(1))處切線方程;
(2)討論f(x)的單調(diào)性.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

19.如圖,已知一個八面體的各條棱長均為1,四邊形ABCD 為正方形,則下列命題中的假命題是( 。
A.不平行的兩條棱所在的直線所成的角是60o或90o
B.四邊形AECF是正方形
C.點A到平面BCE的距離為$\frac{\sqrt{6}}{3}$
D.該八面體的頂點不會在同一個球面上.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

6.已知雙曲線$\frac{x^2}{a^2}$-$\frac{y^2}{b^2}$=1的左、右焦點分別為F1、F2,若雙曲線上存在點P,使得|PF1|=3|PF2|,則此雙曲線的離心率的取值范圍是(  )
A.(1,3]B.[3,+∞)C.(1,2]D.[2,+∞)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

3.函數(shù)f(x)=$\sqrt{4-|x|}$+ln$\frac{{x}^{2}-7x+12}{x-4}$的定義域為(  )
A.(-4,3)B.(-4,3]C.(3,4]D.(3,4)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

4.《張丘建算經(jīng)》中女子織布問題為:某女子善于織布,一天比一天織得快,且從第2天開始,每天比前一天多織相同量的布,已知第一天織5尺布,一月(按30天計)共織390尺布,則從第2天起每天比前一天多織( 。┏卟迹
A.$\frac{1}{2}$B.$\frac{8}{15}$C.$\frac{16}{31}$D.$\frac{16}{29}$

查看答案和解析>>

同步練習冊答案