下列命題:
①命題“事件A與B互斥”是“事件A與B對立”的必要不充分條件;
②“am2<bm2”是“a<b”的充分必要條件;
③“矩形的兩條對角線相等”的否命題為假;
④在中,“”是三個角成等差數(shù)列的充要條件;
⑤中,若,則為直角三角形.
判斷錯誤的有___________.
②⑤
【解析】
試題分析:事件A與B互斥,事件A與B不一定對立;反之事件A與B對立,一定有事件A與B互斥.所以“事件A與B互斥”是“事件A與B對立”的必要不充分條件.所以命題①正確.由am2<bm2知m2>0,不等式兩邊同乘以得,a<b,反之,若a<b,則取m2=0時不能得到am2<bm2,故am2<bm2是a<b的充分不必要條件,故命題②不正確.原命題:矩形的兩條對角線相等.則其否命題為:若四邊形不是矩形,則其對角線不相等.此否命題為假命題,如等腰梯形不是矩形,但其對角線相等,故命題③正確.在△ABC中,若∠B=60°,因為∠A+∠B+∠C=180°,得∠A+∠C=180°-∠B=180°-60°=120°,所以2∠B=∠A+∠C,所以∠A,∠B,∠C三個角成等差數(shù)列.若∠A,∠B,∠C三個角成等差數(shù)列,可設(shè)公差為d,則∠A=∠B-d,∠C=∠B+d,由∠A+∠B+∠C=180°,得∠B-d+∠B+∠b+d=180°,∴∠B=60°.所以在△ABC中,“∠B=60°”是∠A,∠B,∠C三個角成等差數(shù)列的充要條件,故命題④正確.在△ABC中,若sinA=cosB,則sinA=sin(90°-B),所以A=90°-B或A+90°-B=180°,所以A+B=90°或A-B=90°,則△ABC不一定為直角三角形,故命題⑤不正確.故答案為②⑤.
考點:本題考查了判斷命題的真假及充要條件判斷.
點評:最常用的方法是定義法,即“若p?q,則p是q的充分條件”;“若q?p,則p是q成立的必要條件”;“若p?q,則p是q的充要條件”
科目:高中數(shù)學(xué) 來源: 題型:
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
a |
b |
a |
b |
a |
b |
a |
a |
b |
a |
b |
a |
b |
a |
b |
OP |
OA |
OB |
OC |
AB |
AC |
AB |
AC |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:寧夏銀川一中2012屆高三第一次模擬考試數(shù)學(xué)文科試題 題型:013
有下列命題:
①設(shè)集合M={x|0<x≤3},N={x|0<x≤2},則“a∈M”是“a∈N”的充分而不必要條件;
②命題“若a∈M,則bM”的逆否命題是:若b∈M,則aM;
③若p∧q是假命題,則p,q都是假命題;
④命題P:“x0∈R,-x0-1>0”的否定:“x∈R,x2-x-1≤0”
則上述命題中為真命題的是
A.①②③④
B.①③④
C.②④
D.②③④
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com