已知與拋物線交于A、B兩點(diǎn),
(1)若|AB|="10," 求實(shí)數(shù)的值。
(2)若, 求實(shí)數(shù)的值。

(1);(2) m=" -8" 。

解析試題分析:由,得,設(shè),則
(1)所以,所以 6分     
(2)因?yàn)?img src="http://thumb.zyjl.cn/pic5/tikupic/01/d/nokmi1.png" style="vertical-align:middle;" />,所以,即,所以m= -8    6分
考點(diǎn):直線與拋物線的綜合應(yīng)用;弦長(zhǎng)公式。
點(diǎn)評(píng):本題考查弦長(zhǎng)的運(yùn)算,解題時(shí)要注意橢圓性質(zhì)的靈活運(yùn)用和弦長(zhǎng)公式的合理運(yùn)用。在求直線與圓錐曲線相交的弦長(zhǎng)時(shí)一般采用韋達(dá)定理設(shè)而不求的方法,在求解過程中一般采取步驟為:設(shè)點(diǎn)→聯(lián)立方程→消元→韋達(dá)定理→弦長(zhǎng)公式。

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

設(shè)橢圓與拋物線的焦點(diǎn)均在軸上,的中心及的頂點(diǎn)均為原點(diǎn),從每條曲線上各取兩點(diǎn),將其坐標(biāo)記錄于下表:











(Ⅰ)求曲線、的標(biāo)準(zhǔn)方程;
(Ⅱ)設(shè)直線過拋物線的焦點(diǎn),與橢圓交于不同的兩點(diǎn)、,當(dāng)時(shí),求直線的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知拋物線,直線截拋物線C所得弦長(zhǎng)為.
(1)求拋物線的方程;
(2)已知是拋物線上異于原點(diǎn)的兩個(gè)動(dòng)點(diǎn),記試求當(dāng)取得最小值時(shí)的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知橢圓的左頂點(diǎn),過右焦點(diǎn)且垂直于長(zhǎng)軸的弦長(zhǎng)為
(Ⅰ)求橢圓的方程;
(Ⅱ)若過點(diǎn)的直線與橢圓交于點(diǎn),與軸交于點(diǎn),過原點(diǎn)與平行的直線與橢圓交于點(diǎn),求證:為定值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知橢圓的左焦點(diǎn)F為圓的圓心,且橢圓上的點(diǎn)到點(diǎn)F的距離最小值為。
(I)求橢圓方程;
(II)已知經(jīng)過點(diǎn)F的動(dòng)直線與橢圓交于不同的兩點(diǎn)A、B,點(diǎn)M(),證明:為定值。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

平面內(nèi)動(dòng)點(diǎn)到定點(diǎn)的距離比它到軸的距離大
(1)求動(dòng)點(diǎn)的軌跡的方程;
(2)過的直線相交于兩點(diǎn),若,求弦的長(zhǎng)。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知橢圓()過點(diǎn),其左、右焦點(diǎn)分別為,且.
(1)求橢圓的方程;
(2)若是直線上的兩個(gè)動(dòng)點(diǎn),且,則以為直徑的圓是否過定點(diǎn)?請(qǐng)說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知點(diǎn)、, 是一個(gè)動(dòng)點(diǎn), 且直線的斜率之積為.
(1) 求動(dòng)點(diǎn)的軌跡的方程;
(2) 設(shè), 過點(diǎn)的直線、兩點(diǎn), 若對(duì)滿足條件的任意直線, 不等式恒成立, 求的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知橢圓()過點(diǎn),其左、右焦點(diǎn)分別為,且.
(1)求橢圓的方程;
(2)若是直線上的兩個(gè)動(dòng)點(diǎn),且,則以為直徑的圓是否過定點(diǎn)?請(qǐng)說明理由.

查看答案和解析>>

同步練習(xí)冊(cè)答案