【題目】在平面直角坐標(biāo)系中,點(diǎn)為橢圓:的右焦點(diǎn),過(guò)的直線(xiàn)與橢圓交于、兩點(diǎn),線(xiàn)段的中點(diǎn)為.
(1)求橢圓的方程;
(2)若直線(xiàn)、斜率的乘積為,兩直線(xiàn),分別與橢圓交于、、、四點(diǎn),求四邊形的面積.
【答案】(1);(2).
【解析】
(1)設(shè),,,,利用點(diǎn)差法求出直線(xiàn)的斜率為:,又直線(xiàn)的斜率為:,所以,得到,再結(jié)合,,即可求出,,的值,從而求得橢圓的方程;
(2)設(shè)點(diǎn),,,,由題意可知,當(dāng)直線(xiàn)的斜率不存在時(shí),易求四邊形的面積,當(dāng)直線(xiàn)的斜率存在時(shí),設(shè)直線(xiàn)的方程為:,與橢圓方程聯(lián)立,利用韋達(dá)定理代入得,再由弦長(zhǎng)公式和點(diǎn)到直線(xiàn)距離公式求得,由橢圓的對(duì)稱(chēng)性可知:四邊形的面積為,從而得到邊形的面積為.
(1)由題意可知,,設(shè),,∴,,
又∵點(diǎn),在橢圓上,∴,兩式相減得:,
∴,即直線(xiàn)的斜率為:,
又∵直線(xiàn)過(guò)右焦點(diǎn),過(guò)點(diǎn),∴直線(xiàn)的斜率為:,
∴,∴,又∵,,∴,,∴橢圓的方程為:;
(2)設(shè)點(diǎn),,
由題意可知,,即,①當(dāng)直線(xiàn)的斜率不存在時(shí),顯然,,
∴,又,∴,,
∴四邊形的面積,
②當(dāng)直線(xiàn)的斜率存在時(shí),設(shè)直線(xiàn)的方程為:,
聯(lián)立方程,消去得:,
∴,,
∴,
∵,∴,
整理得:,
由弦長(zhǎng)公式得:,
原點(diǎn)(0,0)到直線(xiàn)的距離,
∴,
由橢圓的對(duì)稱(chēng)性可知:四邊形的面積為,
綜上所述,四邊形的面積為.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知數(shù)列的前項(xiàng)和為,其中為常數(shù).
(1)證明: ;
(2)是否存在,使得為等差數(shù)列?并說(shuō)明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖所示,一張形狀為等邊三角形的紙片,邊長(zhǎng)為8,將它對(duì)折,使頂點(diǎn)落在邊上,當(dāng)點(diǎn)沿著從點(diǎn)到點(diǎn)移動(dòng)時(shí),求折痕長(zhǎng)的最大值及最小值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知橢圓的離心率,橢圓上的點(diǎn)到左焦點(diǎn)的距離的最大值為.
(1)求橢圓的標(biāo)準(zhǔn)方程;
(2)已知直線(xiàn)與橢圓交于、兩點(diǎn).在軸上是否存在點(diǎn),使得且,若存在,求出實(shí)數(shù)的取值范圍;若不存在,說(shuō)明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】甲、乙兩人進(jìn)行圍棋比賽,比賽要求雙方下滿(mǎn)五盤(pán)棋,開(kāi)始時(shí)甲每盤(pán)棋贏(yíng)的概率為,由于心態(tài)不穩(wěn),甲一旦輸一盤(pán)棋,他隨后每盤(pán)棋贏(yíng)的概率就變?yōu)?/span>.假設(shè)比賽沒(méi)有和棋,且已知前兩盤(pán)棋都是甲贏(yíng).
(Ⅰ)求第四盤(pán)棋甲贏(yíng)的概率;
(Ⅱ)求比賽結(jié)束時(shí),甲恰好贏(yíng)三盤(pán)棋的概率.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】在平面直角坐標(biāo)系中,點(diǎn)為橢圓:的右焦點(diǎn),過(guò)的直線(xiàn)與橢圓交于、兩點(diǎn),線(xiàn)段的中點(diǎn)為.
(1)求橢圓的方程;
(2)若直線(xiàn)、斜率的乘積為,兩直線(xiàn),分別與橢圓交于、、、四點(diǎn),求四邊形的面積.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知圓,圓,如圖,C1,C2分別交x軸正半軸于點(diǎn)E,A.射線(xiàn)OD分別交C1,C2于點(diǎn)B,D,動(dòng)點(diǎn)P滿(mǎn)足直線(xiàn)BP與y軸垂直,直線(xiàn)DP與x軸垂直.
(1)求動(dòng)點(diǎn)P的軌跡C的方程;
(2)過(guò)點(diǎn)E作直線(xiàn)l交曲線(xiàn)C與點(diǎn)M,N,射線(xiàn)OH⊥l與點(diǎn)H,且交曲線(xiàn)C于點(diǎn)Q.問(wèn):的值是否是定值?如果是定值,請(qǐng)求出該定值;如果不是定值,請(qǐng)說(shuō)明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知直線(xiàn)與函數(shù)()的圖象相交,將其中三個(gè)相鄰交點(diǎn)從左到右依次記為A,B,C,且滿(mǎn)足有下列結(jié)論:
①n的值可能為2
②當(dāng),且時(shí),的圖象可能關(guān)于直線(xiàn)對(duì)稱(chēng)
③當(dāng)時(shí),有且僅有一個(gè)實(shí)數(shù)ω,使得在上單調(diào)遞增;
④不等式恒成立
其中所有正確結(jié)論的編號(hào)為( )
A.③B.①②C.②④D.③④
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,為圓的直徑,點(diǎn),在圓上,,矩形所在平面和圓所在平面互相垂直,已知,,
(1)求證:平面平面
(2)若幾何體和幾何體的體積分別為和,求.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話(huà):027-86699610 舉報(bào)郵箱:58377363@163.com