為等差數(shù)列,是其前n項(xiàng)的和,且,則=( )
A.B.C.D.
C. 

試題分析:因?yàn)?img src="http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824011330575693.png" style="vertical-align:middle;" />,所以,,即,,故選C。
點(diǎn)評(píng):簡(jiǎn)單題,在等差數(shù)列中,。
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

設(shè)數(shù)列的前項(xiàng)和為,若對(duì)于任意的正整數(shù)都有,
(1)設(shè),求證:數(shù)列是等比數(shù)列,并求出的通項(xiàng)公式;
(2)求數(shù)列的前項(xiàng)和。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

已知數(shù)列是等差數(shù)列,,數(shù)列的前n項(xiàng)和是,且.
(I)求數(shù)列的通項(xiàng)公式;
(II)求證:數(shù)列是等比數(shù)列;

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

已知數(shù)列{an}中,a2=1,前n項(xiàng)和為Sn,且
(1)求a1,a3;
(2)求證:數(shù)列{an}為等差數(shù)列,并寫(xiě)出其通項(xiàng)公式;
(3)設(shè),試問(wèn)是否存在正整數(shù)p,q(其中1<p<q),使b1,bp,bq成等比數(shù)列?若存在,求出所有滿足條件的數(shù)組(p,q);若不存在,說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

楊輝是中國(guó)南宋末年的一位杰出的數(shù)學(xué)家、數(shù)學(xué)教育家、楊輝三角是楊輝的一大重要研究成果,它的許多性質(zhì)與組合數(shù)的性質(zhì)有關(guān),楊輝三角中蘊(yùn)藏了許多優(yōu)美的規(guī)律。下圖是一個(gè)11階楊輝三角:
(1)求第20行中從左到右的第4個(gè)數(shù);
(2)若第n行中從左到右第14個(gè)數(shù)與第15個(gè)數(shù)的比為,求n的值;
(3)求n階(包括0階)楊輝三角的所有數(shù)的和;
(4)在第3斜列中,前5個(gè)數(shù)依次為1,3,6,10,15;第4斜列中,第5個(gè)數(shù)為35。顯然,1+3+6+10+15=35。事實(shí)上,一般地有這樣的結(jié)論:第m斜列中(從右上到左下)前k個(gè)數(shù)之和,一定等于第m+1斜列中第k個(gè)數(shù)。試用含有m、k的數(shù)學(xué)公式表示上述結(jié)論,并給予證明。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:填空題

在等差數(shù)列{an}中,若a2=6,a6=2,則公差d=      

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:填空題

在等差數(shù)列中,有,則此數(shù)列的前13項(xiàng)之和為          .

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:填空題

為等差數(shù)列中的第8項(xiàng),則二項(xiàng)式展開(kāi)式中常數(shù)項(xiàng)是第    項(xiàng)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:單選題

設(shè)等差數(shù)列的前n項(xiàng)和為,已知,
則下列結(jié)論中正確的是(     )
A.B.
C.D.

查看答案和解析>>

同步練習(xí)冊(cè)答案